Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Analytics & Reporting - Market Risk - Analyst - London

Goldman Sachs
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Analyst

Senior Data Engineer

Data Scientist - Governance & Reporting Analytics

Senior Data Engineer

Data Engineer

Senior Data Engineer

Background 

Analytics & Reporting (A&R) is a group within Risk Engineering in the Risk Division of Goldman Sachs. The group ensures the firm’s senior leadership, investors and regulators have a complete view of the positional, market, and client activity drivers of the firm’s risk profile allowing them to take actionable and timely risk management decisions. 

Risk Engineering is a multidisciplinary group of quantitative experts who are the authoritative producers of independent risk & capital metrics for the firm. Risk Engineering is responsible for modeling, producing, reviewing, interpreting, explaining and communicating risk & capital metrics and analytics used to ensure the firm adheres to its Risk Appetite and maintains the appropriate amount of Risk Capital. Risk Engineering provides risk & capital metrics, analytics and insights to the Chief Risk Officer, senior management, regulators, and other firm stakeholders. 

Role Responsibilities 

A&R delivers critical regulatory and risk metrics & analytics across risk domains (market, credit, liquidity, operational, capital) and firm activities via regular reporting, customized risk analysis, systematically generated risk reporting and risk tools​.  A&R has a unique vantage point in the firm’s risk data flows that, when coupled with a deep understanding of client and market activities, allows it to build scalable workflows, processes and procedures to deliver actionable risk insights​. The following are core responsibilities for A&R:  Delivering regular and reliable risk metrics, analytics & insights based on deep understanding of the firm’s businesses and its client activities.  Building robust, systematic & efficient workflows, processes and procedures around the production of risk analytics​ for financial & non-financial risk, risk capital and regulatory reporting.  Attesting to the quality, timeliness and completeness of the underlying data used to produce these analytics​. 

Qualifications, Skills & Aptitude  

Masters or Bachelors degree in a quantitative discipline such as data science, mathematics, physics, econometrics, computer science or engineering. 1-3 years of experience, preferably in financial, regulatory or consulting environment Working knowledge of mathematics including statistics, time series analysis and numerical algorithms.  Working knowledge of the financial industry, markets and products and associated non-financial risk. Entrepreneurial, analytically creative, self-motivated and team-oriented.  Excellent written, verbal and team-oriented communication skills.  Experience with programming in Python and SQL for extract transform load (ETL) operations and data analysis (including performance optimization). Experience in using languages such as R, Java, C++ is beneficial.  Experience in developing data visualization and business intelligence solutions using tools such as, but not limited to, Tableau, Alteryx, PowerBI, and front-end technologies and languages. 

ABOUT GOLDMAN SACHS At Goldman Sachs, we commit our people, capital and ideas to help our clients, shareholders and the communities we serve to grow. Founded in 1869, we are a leading global investment banking, securities and investment management firm. Headquartered in New York, we maintain offices around the world.
We believe who you are makes you better at what you do. We're committed to fostering and advancing diversity and inclusion in our own workplace and beyond by ensuring every individual within our firm has a number of opportunities to grow professionally and personally, from our training and development opportunities and firmwide networks to benefits, wellness and personal finance offerings and mindfulness programs. Learn more about our culture, benefits, and people at /careers.
 We’re committed to finding reasonable accommodations for candidates with special needs or disabilities during our recruiting process.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.