AI/ML Engineer

Experis
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Senior Machine Learning Scientist

Senior Machine Learning Scientist

Graduate Machine Learning and AI Engineer

Lead MLOps Engineer

Data Engineer

Location: Scotland Job Type: Permanent Industry: Engineering Job reference: 99999_1737540727 Posted: about 5 hours ago

Role: AI/ML Engineer

Location: Glasgow OR Dundee

Salary: £70,000 max

Remote work:

This is a hybrid role and lots of our software team are Glasgow based and only come to the office a few times per month. We are looking at opening a hub in Glasgow as we know there is more talent there, so we would want them ideally working from the central Glasgow hub for 1-3 days per week and Dundee very occasionally.

The company:

We design and develop across a full stack of disciplines - Mechanical, Electronic, Electrical, and Software Engineering. Within our Digital team, we specialize in developing software for IoT edge devices, cloud services, frontend UI, AI/ML models in computer vision, and data analysis.

We take pride in fostering a collaborative and supportive work environment with a focus on both individual and team development.

Role Description and Purpose

We are seeking a talented and enthusiastic AI/ML Engineer to join our dynamic team at an exciting stage of our digital journey. As a mid-sized enterprise, you'll have the opportunity to work closely with colleagues across the business, gaining visibility and recognition for your contributions. If you thrive in a collaborative environment and enjoy making an impact, this role is for you.

As an AI/ML Engineer, you'll work alongside experienced professionals and gain hands-on experience throughout the entire product development lifecycle.

Responsibilities

Design, develop, and deploy high-performing machine learning models for computer vision applications, such as image classification, object detection, image segmentation, and video analysis. Conduct data analysis, feature engineering, and model selection to optimize performance and accuracy. Collaborate with cross-functional teams (e.g., data scientists, software engineers, and product managers) to translate business requirements into technical solutions. Develop and maintain robust, scalable machine learning pipelines using cloud services (e.g., AWS SageMaker, EC2, S3, Lambda) and other relevant technologies. Stay updated on advancements in computer vision and machine learning research, exploring new opportunities to apply these innovations to our projects. Contribute to the development and improvement of machine learning infrastructure and best practices. Mentor junior team members and promote a culture of innovation and continuous learning.

Experience & Skills

Master's or Ph.D. in Computer Science, Computer Engineering, or a related field, with a strong focus on machine learning. 3+ years of professional experience in developing and deploying machine learning models, particularly for computer vision applications. Strong understanding of deep learning concepts and architectures (e.g., CNNs, RNNs, Transformers) and their practical applications. Proficiency in Python and experience with machine learning libraries (e.g., TensorFlow, PyTorch, scikit-learn). Experience with cloud services, including AWS SageMaker, EC2, S3, Lambda, etc. Familiarity with cloud-native development and deployment practices. Ability to work independently as well as collaboratively. A strong passion for machine learning and a commitment to continuous growth.

General Skills

Excellent problem-solving abilities and creative thinking. Passion for learning and staying current with industry trends and best practices. Strong communication and teamwork skills, with openness and transparency as default. Initiative and a proactive approach to tasks. Flexibility and a focus on contributing to organizational success.

Bonus Points

Knowledge of MLOps principles and best practices. Experience with distributed computing and large-scale data processing. Familiarity with industry-specific applications of computer vision or machine learning.

Benefits:

37.5 hours working week 33 days annual leave Death in service at 4 x your annual salary Employee Assistance Programme Enhanced parental leave policies Birthday day off Paid bereavement leave Paid sick leave Company pension scheme Cycle to work scheme

How to apply?

People Source Consulting Ltd is acting as an Employment Agency in relation to this vacancy. People Source specialise in technology recruitment across niche markets including Information Technology, Digital TV, Digital Marketing, Project and Programme Management, SAP, Digital and Consumer Electronics, Air Traffic Management, Management Consultancy, Business Intelligence, Manufacturing, Telecoms, Public Sector, Healthcare, Finance and Oil & Gas.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.