AI/ML - Data Engineer (NLP/Speech), Siri and Information Intelligence

Apple
Cambridge
9 months ago
Applications closed

Related Jobs

View all jobs

AI) Machine Learning Research Engineer

AI Project Manager

AI Consultant

AI Consultant

AI Consultant

Graduate AI Engineer

Summary:
Play a part in the next revolution in human-computer interaction. Contribute to a product that is redefining mobile computing. Create groundbreaking technology for large scale systems, natural language, big data, and artificial intelligence. And work with the people who created the intelligent assistant that helps millions of people get things done — just by asking. Join the Siri Response / Text-to-Speech (TTS) team at Apple. Our team is looking for exceptional data engineers passionate about delivering delightful customer experiences with Siri voices. As Data Engineer (NLP/Speech), you'll work on building and maintaining text and speech datasets, processes and workflows for our TTS systems.
Key Qualifications:
5+ years’ industry experience processing large-scale text/speech datasets for ML applicationsStrong expertise in Python, (NoSQL) databases, cloud-based data technologies, and working with large datasets and pipelinesExperience in tooling and streamlining workflows in complex processesHighly-motivated, creative, organized and a strong problem solverOutstanding spoken and written communication skills
Description:
Apple is hiring data engineers for the Siri Response / Text-to-Speech (TTS) team. You'll be working at the frontier of AI, processing massive amounts of speech and text data for our TTS systems. You'll work closely with fellow engineers to gather and integrate new speech and text data into our repositories, transforming raw data into formats usable for TTS model training, and making datasets available to partner teams in Apple to power Siri's voice. Your responsibilities will include: * Collect and centralize data from various sources, working with internal privacy, legal and modeling teams* Build processes and workflows that support data transformation for TTS systems (e.g. audio processing and text annotation), based on the needs and requirements of modeling teams* Provide datasets to partner teams, managing access or usage control* Create dashboard for interactive data exploration* Develop tools and tests to ensure quality and help diagnose issues* Perform analysis on external and internal processes and data to identify opportunities for improvement* Develop prototype ML models utilizing in-house toolkits If this sounds like you, we'd love to hear from you!
Additional Requirements:
* Experience in working with natural language data, lexical resources, corpora, NLP algorithms and tools is a plus* Experience in machine learning, natural language processing, machine translation or text-to-speech is a plus* Knowledge of one or more foreign languages is a plus

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.