AI/ML - Data Engineer (NLP/Speech), Siri and Information Intelligence

Apple
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

AI & ML Engineer - Production AI & NLP

AI/ML Software Engineer III — GenAI & NLP Pipelines

AI/ML Data Scientist – Generative AI & MLOps on GCP

AI/ML Data Scientist - Drive Cross-Dept Insights

AI Engineer – (Quantexa/Fraud & Financial Crime/ETL/MLOps/CI/CD/Azure/Insurance)

AI & Machine Learning Intern

Summary:
Play a part in the next revolution in human-computer interaction. Contribute to a product that is redefining mobile computing. Create groundbreaking technology for large scale systems, natural language, big data, and artificial intelligence. And work with the people who created the intelligent assistant that helps millions of people get things done — just by asking. Join the Siri Response / Text-to-Speech (TTS) team at Apple. Our team is looking for exceptional data engineers passionate about delivering delightful customer experiences with Siri voices. As Data Engineer (NLP/Speech), you'll work on building and maintaining text and speech datasets, processes and workflows for our TTS systems.
Key Qualifications:
5+ years’ industry experience processing large-scale text/speech datasets for ML applicationsStrong expertise in Python, (NoSQL) databases, cloud-based data technologies, and working with large datasets and pipelinesExperience in tooling and streamlining workflows in complex processesHighly-motivated, creative, organized and a strong problem solverOutstanding spoken and written communication skills
Description:
Apple is hiring data engineers for the Siri Response / Text-to-Speech (TTS) team. You'll be working at the frontier of AI, processing massive amounts of speech and text data for our TTS systems. You'll work closely with fellow engineers to gather and integrate new speech and text data into our repositories, transforming raw data into formats usable for TTS model training, and making datasets available to partner teams in Apple to power Siri's voice. Your responsibilities will include: * Collect and centralize data from various sources, working with internal privacy, legal and modeling teams* Build processes and workflows that support data transformation for TTS systems (e.g. audio processing and text annotation), based on the needs and requirements of modeling teams* Provide datasets to partner teams, managing access or usage control* Create dashboard for interactive data exploration* Develop tools and tests to ensure quality and help diagnose issues* Perform analysis on external and internal processes and data to identify opportunities for improvement* Develop prototype ML models utilizing in-house toolkits If this sounds like you, we'd love to hear from you!
Additional Requirements:
* Experience in working with natural language data, lexical resources, corpora, NLP algorithms and tools is a plus* Experience in machine learning, natural language processing, machine translation or text-to-speech is a plus* Knowledge of one or more foreign languages is a plus

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.