National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

AI Industry Solutions Lead

Capgemini
London
3 months ago
Applications closed

Related Jobs

View all jobs

Principal Machine Learning Scientist - Derry/Londonderry

Principal Data Scientist

Senior Data Engineer

Data Science Consultant - Edinburgh

Data Scientist | S3 | Data Centre of Excellence | Multiple Locations

Principal Data Scientist

Job Title:AI Industry Solutions Lead


Get The Future You Want!

Choosing Capgemini means choosing a company where you will be empowered to shape your career in the way you’d like, where you’ll be supported and inspired by a collaborative community of colleagues around the world, and where you’ll be able to reimagine what’s possible. Join us and help the world’s leading organizations unlock the value of technology and build a more sustainable, more inclusive world.


Your Role

The AI Industry Solutions Lead role lead will use our AI use case exploration approach combined with their own experience and knowledge to identify, scope and run these use case exploration projects working with stakeholders from across Capgemini and our customers. Specific responsibilities include:

  • Manages and successfully executes assigned AI use case explorations through the entire lifecycle
  • Collaborates with cross-functional partners from product, architecture, BD, Risk, Legal, Data Privacy, AI Governance etc. to achieve successful outcomes
  • Facilitates workshops to upskill key partners and teams on innovation mindset and methods
  • Working with the AIIS Manager, helps iterate on the AI use case exploration process to develop new methods and tools based on sprint experiences and our partner feedback
  • Continuously research and implement brand new AI and machine learning techniques to improve capabilities, ensuring Capgemini remains at the forefront of AI Innovation in the financial industry.


Your Profile

The ideal candidate will have 5-10 years of experience in innovation, AI, project planning in the financial services industry. Key attributes below:

  • A background of working in an agile product environment and/or experience applying design thinking principles in a product development context
  • Strong experience in analysing complex business problems and translating them into structured data science projects and AI powered solutions
  • Ability to operate in a fast-paced, ever-evolving technological landscape
  • Experience of sourcing and prioritising customer needs in a product development lifecycle
  • Excellent collaboration skills, communication skills, stakeholder management skills and ability to inspire and motivate others around shared goals
  • Strong organization and planning skills with the ability to prioritise workload when multiple projects are on the go
  • Entrepreneurial, creative and passionate about solving tough challenges
  • Relevant industry knowledge and experience in financial services, ideally banking, payments or securities
  • Brings a Consulting mindset to work with the customers to understand their challenges and address them using our frameworks and innovation toolkit
  • A can-do attitude and drive to achieve excellence in all the work they do.


About Capgemini

Capgemini is a global business and technology transformation partner, helping organizations to accelerate their dual transition to a digital and sustainable world while creating tangible impact for enterprises and society. It is a responsible and diverse group of 350,000 team members in more than 50 countries. With its strong over 55-year heritage, Capgemini is trusted by its clients to unlock the value of technology to address the entire breadth of their business needs. It delivers end-to-end services and solutions leveraging strengths from strategy and design to engineering, all fueled by its market-leading capabilities in AI, cloud, and data, combined with its deep industry expertise and partner ecosystem. The Group reported 2023 global revenues of €22.5 billion.


Get The Future You Want |www.capgemini.com

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.