National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

AI Industry Solutions Lead

Capgemini
London
2 months ago
Applications closed

Related Jobs

View all jobs

MLOps & AI Engineer Lead

MLOps & AI Engineer Lead

Founding Machine Learning Engineer

Senior Data Scientist

Senior Data Scientist

Principal Engineer

Job Title:AI Industry Solutions Lead


Get The Future You Want!

Choosing Capgemini means choosing a company where you will be empowered to shape your career in the way you’d like, where you’ll be supported and inspired by a collaborative community of colleagues around the world, and where you’ll be able to reimagine what’s possible. Join us and help the world’s leading organizations unlock the value of technology and build a more sustainable, more inclusive world.


Your Role

The AI Industry Solutions Lead role lead will use our AI use case exploration approach combined with their own experience and knowledge to identify, scope and run these use case exploration projects working with stakeholders from across Capgemini and our customers. Specific responsibilities include:

  • Manages and successfully executes assigned AI use case explorations through the entire lifecycle
  • Collaborates with cross-functional partners from product, architecture, BD, Risk, Legal, Data Privacy, AI Governance etc. to achieve successful outcomes
  • Facilitates workshops to upskill key partners and teams on innovation mindset and methods
  • Working with the AIIS Manager, helps iterate on the AI use case exploration process to develop new methods and tools based on sprint experiences and our partner feedback
  • Continuously research and implement brand new AI and machine learning techniques to improve capabilities, ensuring Capgemini remains at the forefront of AI Innovation in the financial industry.


Your Profile

The ideal candidate will have 5-10 years of experience in innovation, AI, project planning in the financial services industry. Key attributes below:

  • A background of working in an agile product environment and/or experience applying design thinking principles in a product development context
  • Strong experience in analysing complex business problems and translating them into structured data science projects and AI powered solutions
  • Ability to operate in a fast-paced, ever-evolving technological landscape
  • Experience of sourcing and prioritising customer needs in a product development lifecycle
  • Excellent collaboration skills, communication skills, stakeholder management skills and ability to inspire and motivate others around shared goals
  • Strong organization and planning skills with the ability to prioritise workload when multiple projects are on the go
  • Entrepreneurial, creative and passionate about solving tough challenges
  • Relevant industry knowledge and experience in financial services, ideally banking, payments or securities
  • Brings a Consulting mindset to work with the customers to understand their challenges and address them using our frameworks and innovation toolkit
  • A can-do attitude and drive to achieve excellence in all the work they do.


About Capgemini

Capgemini is a global business and technology transformation partner, helping organizations to accelerate their dual transition to a digital and sustainable world while creating tangible impact for enterprises and society. It is a responsible and diverse group of 350,000 team members in more than 50 countries. With its strong over 55-year heritage, Capgemini is trusted by its clients to unlock the value of technology to address the entire breadth of their business needs. It delivers end-to-end services and solutions leveraging strengths from strategy and design to engineering, all fueled by its market-leading capabilities in AI, cloud, and data, combined with its deep industry expertise and partner ecosystem. The Group reported 2023 global revenues of €22.5 billion.


Get The Future You Want |www.capgemini.com

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.