National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Machine Learning Engineer

Burns Sheehan
City of London
3 weeks ago
Create job alert

Lead/Senior Machine Learning Engineer


  • £110,000-£120,000
  • Bonus up to 10%
  • Shares so as they continue to grow you benefit to
  • Hybrid working - one day a week London (with door always open policy)


Are you a innovative, decisive Machine Learning Engineer looking for your next challenge?


This is your chance to join a marquee name within the fin-tech space looking to add their first Machine Learning Engineer to the business, this will require you to be a key individual contributor with the ability to make decisions yourself.


Within the role you will drive innovation by optimising and automating Pricing processes to enable faster, more accurate decision-making. Your work will focus on developing and maintaining tooling and frameworks that enhance the efficiency of our predictive models, reducing deployment times, increasing scalability, and improving model performance through regular updates and monitoring.

You will work closely with the Data Scientists and Product team to deliver scalable, production-grade ML systems.


This is a super exciting time to join the business who after a number of years of great success have hit profitability and now want to grow through strategic hiring.


Key Responsibilities


  • Build model lifecycle tooling (deployment, monitoring and alerting) for our predictive models (for example claims cost, conversion, retention, market models)
  • Maintain and improve the development environment (Kubeflow) used by the Data Scientists


  • Develop and maintain pricing analytics tools that enable faster impact assessments, reducing manual work
  • Collaborate with the technical pricing, street pricing and product teams to gather requirements and feedback on tooling and to build impactful technology
  • Communicate complex concepts to technical and non-technical stakeholders through clear storytelling



Required Skills


  • Education: Bachelor’s or Master’s degree in Statistics, Data Science, Computer Science or related field
  • Experience: Proven experience in ML model lifecycle management

● Core Competencies:

  • Model lifecycle: You’ve got hands-on experience with managing the ML model lifecycle, including both online and batch processes
  • Statistical Methodology: You have worked with GLMs and other machine learning algorithms and have in-depth knowledge of how they work
  • Python: You have built and deployed production-grade Python applications and you are familiar with data science libraries such as pandas and scikit-learn
  • Tooling & Environment: ○ DevOps: You have experience working with DevOps tooling, such as gitops, Kubernetes, CI/CD tools (we use buildkite) and Docker
  • Cloud: You have worked with cloud-based environments before (we use AWS)
  • SQL: You have a good grasp of SQL, particularly with cloud data warehouses like Snowflake
  • Version control: You are proficient with git


Soft Skills:

  • You are an excellent communicator, with an ability to translate non-technical requirements into clear, actionable pieces of work
  • You have proven your project management skills, with the ability to manage multiple priorities


Interested in finding out more? Click apply to be considered for shortlisting.

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.