National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Pricing & Revenue Data Scientist

Harnham
London
3 weeks ago
Create job alert

Senior Data Scientist - Optimisation (Contract)

Outside IR35 | £400-450 per day | 3-month initial term | Hybrid London (2-3 days on-site)

The brief

A global marketing-data organisation is upgrading the engine that matches millions of survey invitations to the right respondents. Your task: treat the matching pipeline as a full-scale optimisation problem and raise both accuracy and yield.

Core responsibilities

  • Model optimisation- refactor and improve existing matching/segmentation models; design objective functions that balance cost, speed and data quality.

  • Experimentation- set up offline metrics and online A/B tests; analyse uplift and iterate quickly.

  • Production delivery- build scalable pipelines in AWS SageMaker (moving to Azure ML); containerise code and hook into CI/CD.

  • Monitoring & tuning- track drift, response quality and spend; implement automated retraining triggers.

  • Collaboration- work with Data Engineering, Product and Ops teams to translate business constraints into mathematical formulations.

A typical day

  1. Morning stand-up: align on performance targets and new constraints.

  2. Data dive: explore panel behaviour in Python/SQL, craft new features.

  3. Modelling sprint: run hyper-parameter sweeps or explore heuristic/greedy and MIP/SAT approaches.

  4. Deployment: ship a model as a container, update an Airflow (or Azure Data Factory) job.

  5. Review: inspect dashboards, compare control vs. treatment, plan next experiment.

Tech stack

Python (pandas, NumPy, scikit-learn, PyTorch/TensorFlow)
SQL (Redshift, Snowflake or similar)
AWS SageMaker → Azure ML migration, with Docker, Git, Terraform, Airflow / ADF
Optional extras: Spark, Databricks, Kubernetes.

What you'll bring

  • 3-5+ years building optimisation or recommendation systems at scale.

  • Strong grasp of mathematical optimisation (e.g., linear/integer programming, meta-heuristics) as well as ML.

  • Hands-on cloud ML experience (AWS or Azure).

  • Proven track record turning prototypes into reliable production services.

  • Clear communication and documentation habits.

Desired Skills and Experience

Experience & skills checklist

3-5 + yrs optimisation/recommender work at production scale (dynamic pricing, yield, marketplace matching).

Mathematical optimisation know-how - LP/MIP, heuristics, constraint tuning, objective-function design.

Python toolbox: pandas, NumPy, scikit-learn, PyTorch/TensorFlow; clean, tested code.

Cloud ML: hands-on with AWS SageMaker plus exposure to Azure ML; Docker, Git, CI/CD, Terraform.

SQL mastery for heavy-duty data wrangling and feature engineering.

Experimentation chops - offline metrics, online A/B test design, uplift analysis.

Production mindset: containerise models, deploy via Airflow/ADF, monitor drift, automate retraining.

Soft skills: clear comms, concise docs, and a collaborative approach with DS, Eng & Product.

Bonus extras: Spark/Databricks, Kubernetes, big-data panel or ad-tech experience.

Related Jobs

View all jobs

Pricing & Revenue Data Scientist

Senior Pricing Optimisation Data Scientist

Data Scientist - Price Optimisation

Price Optimisation Data Scientist

Price Optimisation Data Scientist

Principal / Lead Data Scientist (Basé à London)

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.