University Assistant/Associate Professor

University of Cambridge
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Analyst - HOTH, Permanent

Data Engineer (KTP Associate Position) - Salford

Data Engineer (KTP Associate Position) - Salford

Data Engineer (KTP Associate Position) - Salford

Data Engineer (KTP Associate Position) - Salford

Data Engineer (KTP Associate Position) - Salford

We welcome excellent candidates who can teach and perform research in Plant Ecology and will complement our expertise in forest ecology, conservation, and evolution. In particular, we are interested in applications from those with a focus on fieldwork, collection-based approaches, or big data analysis in areas such as community ecology, plant and microbial responses to climate change, forestry, and the global restoration and conservation agendas.

The appointee will join the Department of Plant Sciences, which delivers teaching and research that stretches across the plant sciences discipline - from ecology and conservation, to physiology, genetics and genomics. There will be the opportunity to be affiliated with the Cambridge Conservation Research Institute, a world-leading centre for research and training in biodiversity conservation, working in partnership with ten international conservation organisations.

Key responsibilities include teaching undergraduates, conducting world-leading research, and advising postgraduate students and post-doctoral workers. There is the opportunity to become a Fellow of a College. Undergraduate teaching includes lectures, practical classes, and small-group supervisions. The teaching commitment also includes an annual field course (either in England, Portugal or Borneo). Postgraduate training options include contribution to MPhil and PhD programmes. Innovations in teaching methods are actively encouraged, as are engagement with mentoring and professional development.

We will support the successful candidate to develop a research programme that complements and reinforces existing Departmental research strengths. There are shared laboratory facilities for a variety of environmental analyses both within the Department and in collaboration with other Departments.

Candidates must have a PhD in a relevant field and sufficient breadth and/or depth of specialist knowledge in their chosen discipline to be able to teach to a high standard. They should also have evidence of excellence in research and demonstrated capacity to develop research objectives, projects and proposals. Appointments at the level of Associate Professor will usually be able to provide evidence of success in obtaining research funding to support research or career development.

Applications should comprise a letter of application (summarise how you would contribute to both teaching and research in the Department), your curriculum vitae (including up-to-date publications list, and for three outputs a concise narrative outlining the context for each piece of work, your contribution to the output, and the importance of the findings), and a statement of your current and future research plans (no more than five pages in length).

The University actively supports equality, diversity and inclusion and encourages applications from all sections of society.

Appointment will be either at Grade 9 (£45,585-£57,696) or Grade 10 (£61,198- £64,914), depending on skills and experience.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.