TikTok Shop - Ecommerce Anti-Fraud Data Analyst

TikTok
London
9 months ago
Applications closed

Related Jobs

View all jobs

Marketing Machine Learning Engineer

TikTok is the leading destination for short-form mobile video. At TikTok, our mission is to inspire creativity and bring joy. TikTok's global headquarters are in Los Angeles and Singapore, and its offices include New York, London, Dublin, Paris, Berlin, Dubai, Jakarta, Seoul, and Tokyo.Why Join UsCreation is the core of TikTok's purpose. Our platform is built to help imaginations thrive. This is doubly true of the teams that make TikTok possible. Together, we inspire creativity and bring joy - a mission we all believe in and aim towards achieving every day. To us, every challenge, no matter how difficult, is an opportunity; to learn, to innovate, and to grow as one team. Status quo? Never. Courage? Always. At TikTok, we create together and grow together. That's how we drive impact - for ourselves, our company, and the communities we serve. Ecommerce's Governance and Experience(GNE) is a global team responsible for ensuring our marketplace is safe and trustworthy for not only users but also sellers and creators. We value user satisfaction and work on policies, rules, and systems to ensure quality. As the Anti-fraud analyst, you will be responsible for building, improving, and monitoring business processes that detect and prevent fraudulent activities in various scenarios including transactions, KYC, and seller-creator affiliation. Roles & Responsibilities: - Apply investigational and analytic skills to monitor, audit, and analyze potential fraudulent cases and produce root cause analysis report with value-added risk mitigation suggestions.- Collaborate with product managers, data scientists, and the engineering team to evaluate the efficiency of existing tools, processes, and models related to fraud management.- Understand the trends and intelligence of fraudulent activities in each market and build intelligence systems to mitigate fraud.- Define key performance metrics and build detailed reporting models for effective tracking, reporting, and feedback on measures implemented.- Drive process implementation and improvement that streamlines determination of fake orders, incentive abuse, and/or other types of fraud.- Communicate findings and complex results to key stakeholders and manage timeline of mitigation projects.

Minimum Qualifications- Bachelor's degree or above with a background in Computer Science, Business Analytic, Math, Statistics, or related field.- Strong data analysis and correlation skills with ability to work through complex and unfamiliar data sets and able to derive the characteristics of different scenarios.- Experience with SQL and analytical tools (SAS, R, Python) is a must. Preferred Qualifications- Comfortable in a matrix organization and to drive cross-functional and cross-regional collaborations.- Strong attention to detail and ability to notice discrepancies in data.- Experience with AI and machine learning is a plus.- Familiarity with risk and fraud in Ecommerce fields is a strong plus.- Past experience working in SEA or EU market is highly preferred.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.