Test Engineer

London
4 days ago
Create job alert

Job Title: Test Engineer
Location: Remote
Salary/Rate: £440
Start Date: 05/05/2025
Job Type: Contract

Job Responsibilities/Objectives:
You will be responsible for ensuring data quality and integrity by developing, maintaining, and executing automated data tests across complex ETL pipelines and cloud-based systems. This includes collaboration with cross-functional teams to implement effective testing strategies and improve continuous integration and delivery practices.

Design, develop, and maintain automated test scripts in Python for data validation and ETL testing.
Conduct thorough testing of ETL processes within AWS environments to ensure accuracy and performance.
Collaborate with data engineers and analysts to troubleshoot complex data issues and ensure test coverage.
Implement and integrate automated testing into CI/CD pipelines for seamless deployment processes.
Analyse large datasets to identify and resolve data quality issues efficiently.
Work within Agile teams to deliver high-quality, tested data solutions in iterative development cycles.

Required Skills/Experience:
The ideal candidate will have the following:

Proficiency in Python with a strong background in writing automated test scripts.
Solid understanding of ETL processes and hands-on experience with AWS services such as Glue, Lambda, and Redshift.
Familiarity with SQL for data querying, manipulation, and validation.
Experience with data testing frameworks and integrating them into CI/CD environments.
Strong analytical and problem-solving skills for handling large and complex datasets.
Prior experience in roles such as Data Test Engineer, ETL Tester, or similar, preferably within Agile teams.

If you are interested in this opportunity, please apply now with your updated CV in Microsoft Word/PDF format.

Disclaimer
Notwithstanding any guidelines given to level of experience sought, we will consider candidates from outside this range if they can demonstrate the necessary competencies.

Square One is acting as both an employment agency and an employment business, and is an equal opportunities recruitment business. Square One embraces diversity and will treat everyone equally. Please see our website for our full diversity statement

Related Jobs

View all jobs

Powertrain Charging Test Data Engineer

ADAS Engineer

Data Engineer

Data Engineer

Software Engineer (Machine Learning)

Vision Systems Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.