Technical Engineer

Belfast
9 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Senior Lead Technical Data Engineer - Compute Data Platform

Hybrid Data Engineering Lead — Databricks

Lead Data Engineer - DBT

Lead Data Engineer DBT

Senior Consultant, Data Engineer, AI&Data, UKI, London

Technical Engineer – customer facing role so need to be in Belfast office a few days a week.
Do you want to join a high-growth, dynamic tech business that is impacting real-world issues with its innovative products?
The company
This company are primarily data driven with domain expertise delivering insights to networks and assets using analytics, presentation, machine learning and AI that is SAAS and cloud based services.
The Role:
Working as a Technical Customer Delivery Engineer with and as part of the internal customer development and delivery team, help enhance the success of our customer deployments and product utilisation. You will do this in both a proactive and reactive mode, where internally we work to enhance and address any potential problems and also to respond to customer queries or issues as they are raised.
This is a technical role, requiring good teamwork and communication skills working across internal development and delivery teams, customer account management, and our customers. You will need to be able to articulate status in terms of delivery of support to customers, and also what is required from other teams to help you make your role successful.
The work is mainly helping customers successfully utilise the product in guiding them to grow their supported network elements, make changes/updates/enhancements to existing configurations, and helping fix/address issues when they occur.
Responsibilities:
AWS Infrastructure Management:

  • Design, implement, and manage AWS cloud infrastructure.
  • Optimise AWS resources to ensure cost-effective and scalable solutions.
  • Monitor and maintain AWS services including EC2, S3, RDS, Lambda, and more.
    Deployment and Release Management:
  • Develop and maintain automated deployment scripts.
  • Ensure smooth and efficient deployment processes.
  • Troubleshoot and resolve deployment issues in a timely manner.
    Containerisation:
  • Implement and manage container orchestration platforms such as Kubernetes, Docker EBS.
  • Ensure containerized applications are secure, scalable, and efficiently managed.
    CI/CD Pipeline Management:
  • Design, implement, and manage CI/CD pipelines using tools such as Jenkins, GitLab, Bitbucket
  • Ensure efficient and reliable build, test, and deployment processes.
  • Collaborate with development teams to improve CI/CD practices.
    Monitoring and Performance Optimisation:
  • Implement monitoring tools and practices to ensure the reliability and performance of infrastructure and applications.
  • Identify and resolve performance bottlenecks and system failures.
    Collaboration and Support:
  • Work closely with development, QA to support their infrastructure and deployment needs.
  • Provide technical guidance and support to team members and stakeholders.
    Testing Automation:
  • Develop and implement automated testing frameworks .
  • Work with development teams to integrate automated tests into the CI/CD pipeline.
  • Ensure high test coverage and reliable test results.
    Essential Criteria:
  • Degree level education in a relevant discipline or equivalent experience
  • Ideally 4 years development/delivery experience and 12 months experience in a DevOps role or a developer role involving significant DevOps responsibilities
  • Experienced in at least one of the main cloud technologies – AWS, Azure, RedHat, GCP, IBM Cloud
  • Strong working knowledge of Linux
  • Experience of building and implementing CI/CD pipelines including working with repos, build automation tools, build orchestration and environment automation. e.g. Jenkins, GitHub, GitLab, CloudFormation, Others
  • Experience in implementing tools for logging, monitoring and alerting. e.g. Prometheus, Splunk, CloudWatch, Nagios
  • Experience in creating and automating virtual machines in public and private clouds
  • An understanding or experience of high availability, business continuity and disaster recovery solutions in the cloud
    Benefits:
    Great salary
    Private medical and dental insurance
    24 days annual leave
    Additional day off for birthday
    Enhanced maternity / paternity package
    Hybrid working
    Free parking at office
    Share Options

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.