Technical Data Analyst

HCLTech
London
8 months ago
Applications closed

Related Jobs

View all jobs

Technical Data Analyst

Junior Data Analyst

Senior Data Analyst

Junior Data Analyst: Modelling, Analytics & Tech Build

Data Analyst

Data Analyst

HCLTech is a global technology company, home to more than 220,000 people across 60 countries, delivering industry-leading capabilities centered around digital, engineering, cloud and AI, powered by a broad portfolio of technology services and products. We work with clients across all major verticals, providing industry solutions for Financial Services, Manufacturing, Life Sciences and Healthcare, Technology and Services, Telecom and Media, Retail and CPG, and Public Services. Consolidated revenues as of 12 months ending December 2024 totaled $13.8 billion.



We're looking for an experienced Technical Data Analyst with 10+ years of experience in data analysis, statistical modeling, and data visualization. The ideal candidate will have a strong background in data analysis, including data mining, predictive analytics, and data visualization. The Technical Data Analyst will be responsible for analyzing and interpreting complex data sets, developing statistical models, and creating data visualizations to inform business decisions.


Key Responsibilities:

1. *Data Analysis*: Analyze and interpret complex data sets, including data mining, predictive analytics, and data visualization.

2. *Statistical Modeling*: Develop and maintain statistical models, including regression analysis, time series analysis, and machine learning algorithms.

3. *Data Visualization*: Create data visualizations, including reports, dashboards, and interactive visualizations.

4. *STTM*: Develop and maintain STTM solutions, including data integration, data quality, and data governance.

5. *Collaboration*: Collaborate with cross-functional teams, including business stakeholders, data scientists, and IT teams, to ensure effective delivery of data solutions.

6. *Technical Leadership*: Provide technical leadership and guidance to junior team members, including mentoring and coaching.


Requirements:

1. *Experience*: 10+ years of experience in data analysis, statistical modeling, and data visualization.

2. *Data Analysis Knowledge*: Strong understanding of data analysis, including data mining, predictive analytics, and data visualization.

3. *Statistical Modeling Knowledge*: Strong understanding of statistical modeling, including regression analysis, time series analysis, and machine learning algorithms.

4. *Data Visualization Knowledge*: Strong understanding of data visualization, including reports, dashboards, and interactive visualizations.

5. *Programming Skills*: Proficiency in programming languages, such as Python, R, or SQL.

6. *Communication*: Excellent communication skills, with the ability to communicate technical concepts to non-technical stakeholders.


Nice to Have:

1. *Certifications*: Certifications in data analysis, statistical modeling, or data visualization, such as Certified Data Analyst or Certified Analytics Professional.

2. *Cloud Experience*: Experience with cloud-based data solutions, including AWS, Azure, or Google Cloud.

3. *DevOps*: Experience with DevOps practices, such as continuous integration and continuous deployment.

4. *Agile Methodologies*: Experience with Agile methodologies, such as Scrum or Kanban.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.