Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Technical Data Analyst

HCLTech
London
3 months ago
Applications closed

Related Jobs

View all jobs

Technical Data Analyst

Technical Data Analyst - Reference Data Platform.

Technical Data Analyst - London / SE - ASAP Start

Revenue Data Analyst

Staff Data Analyst

Technical Data Engineer

HCLTech is a global technology company, home to more than 220,000 people across 60 countries, delivering industry-leading capabilities centered around digital, engineering, cloud and AI, powered by a broad portfolio of technology services and products. We work with clients across all major verticals, providing industry solutions for Financial Services, Manufacturing, Life Sciences and Healthcare, Technology and Services, Telecom and Media, Retail and CPG, and Public Services. Consolidated revenues as of 12 months ending December 2024 totaled $13.8 billion.



We're looking for an experienced Technical Data Analyst with 10+ years of experience in data analysis, statistical modeling, and data visualization. The ideal candidate will have a strong background in data analysis, including data mining, predictive analytics, and data visualization. The Technical Data Analyst will be responsible for analyzing and interpreting complex data sets, developing statistical models, and creating data visualizations to inform business decisions.


Key Responsibilities:

1. *Data Analysis*: Analyze and interpret complex data sets, including data mining, predictive analytics, and data visualization.

2. *Statistical Modeling*: Develop and maintain statistical models, including regression analysis, time series analysis, and machine learning algorithms.

3. *Data Visualization*: Create data visualizations, including reports, dashboards, and interactive visualizations.

4. *STTM*: Develop and maintain STTM solutions, including data integration, data quality, and data governance.

5. *Collaboration*: Collaborate with cross-functional teams, including business stakeholders, data scientists, and IT teams, to ensure effective delivery of data solutions.

6. *Technical Leadership*: Provide technical leadership and guidance to junior team members, including mentoring and coaching.


Requirements:

1. *Experience*: 10+ years of experience in data analysis, statistical modeling, and data visualization.

2. *Data Analysis Knowledge*: Strong understanding of data analysis, including data mining, predictive analytics, and data visualization.

3. *Statistical Modeling Knowledge*: Strong understanding of statistical modeling, including regression analysis, time series analysis, and machine learning algorithms.

4. *Data Visualization Knowledge*: Strong understanding of data visualization, including reports, dashboards, and interactive visualizations.

5. *Programming Skills*: Proficiency in programming languages, such as Python, R, or SQL.

6. *Communication*: Excellent communication skills, with the ability to communicate technical concepts to non-technical stakeholders.


Nice to Have:

1. *Certifications*: Certifications in data analysis, statistical modeling, or data visualization, such as Certified Data Analyst or Certified Analytics Professional.

2. *Cloud Experience*: Experience with cloud-based data solutions, including AWS, Azure, or Google Cloud.

3. *DevOps*: Experience with DevOps practices, such as continuous integration and continuous deployment.

4. *Agile Methodologies*: Experience with Agile methodologies, such as Scrum or Kanban.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.