Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Technical Data Analyst

HCLTech
London
4 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Analyst

Data Analyst & Continuous Improvement Lead

DataBricks Data Engineer - Financial Services

DataBricks Data Engineer - Financial Services

Senior Data Analyst

Data Analyst

HCLTech is a global technology company, home to more than 220,000 people across 60 countries, delivering industry-leading capabilities centered around digital, engineering, cloud and AI, powered by a broad portfolio of technology services and products. We work with clients across all major verticals, providing industry solutions for Financial Services, Manufacturing, Life Sciences and Healthcare, Technology and Services, Telecom and Media, Retail and CPG, and Public Services. Consolidated revenues as of 12 months ending December 2024 totaled $13.8 billion.



We're looking for an experienced Technical Data Analyst with 10+ years of experience in data analysis, statistical modeling, and data visualization. The ideal candidate will have a strong background in data analysis, including data mining, predictive analytics, and data visualization. The Technical Data Analyst will be responsible for analyzing and interpreting complex data sets, developing statistical models, and creating data visualizations to inform business decisions.


Key Responsibilities:

1. *Data Analysis*: Analyze and interpret complex data sets, including data mining, predictive analytics, and data visualization.

2. *Statistical Modeling*: Develop and maintain statistical models, including regression analysis, time series analysis, and machine learning algorithms.

3. *Data Visualization*: Create data visualizations, including reports, dashboards, and interactive visualizations.

4. *STTM*: Develop and maintain STTM solutions, including data integration, data quality, and data governance.

5. *Collaboration*: Collaborate with cross-functional teams, including business stakeholders, data scientists, and IT teams, to ensure effective delivery of data solutions.

6. *Technical Leadership*: Provide technical leadership and guidance to junior team members, including mentoring and coaching.


Requirements:

1. *Experience*: 10+ years of experience in data analysis, statistical modeling, and data visualization.

2. *Data Analysis Knowledge*: Strong understanding of data analysis, including data mining, predictive analytics, and data visualization.

3. *Statistical Modeling Knowledge*: Strong understanding of statistical modeling, including regression analysis, time series analysis, and machine learning algorithms.

4. *Data Visualization Knowledge*: Strong understanding of data visualization, including reports, dashboards, and interactive visualizations.

5. *Programming Skills*: Proficiency in programming languages, such as Python, R, or SQL.

6. *Communication*: Excellent communication skills, with the ability to communicate technical concepts to non-technical stakeholders.


Nice to Have:

1. *Certifications*: Certifications in data analysis, statistical modeling, or data visualization, such as Certified Data Analyst or Certified Analytics Professional.

2. *Cloud Experience*: Experience with cloud-based data solutions, including AWS, Azure, or Google Cloud.

3. *DevOps*: Experience with DevOps practices, such as continuous integration and continuous deployment.

4. *Agile Methodologies*: Experience with Agile methodologies, such as Scrum or Kanban.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.