Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Technical Architect - Data Science

TESTQ Technologies Limited
Leicester
4 weeks ago
Create job alert
TQUKI0480_4937 - Technical Architect - Data Science

Job Type: Permanent


Work Mode: Remote


Job title: Technical Architect - Data Science


Job Purpose:


TESTQ Technologies is an IT services and Solutions Company whose offerings span over a variety of industry sectors with strong technical, domain, and processexpertisehelping clients grow their businesses and decrease operational costs on a continuous basis in an ever-changing business environment.


The Technical Architect – Data Science is responsible for designing, developing, and implementing end-to-end data and AI solutions. This role bridges data engineering, data science, and architecture by defining scalable frameworks, guiding model deployment, and ensuring optimal use of cloud and big data technologies.


Job Description (Main Duties and Responsibilities):



  • Design and architect for end-to-end data science and AI solutions aligned with enterprise strategy.
  • Define scalable data architectures for ingestion, processing, storage, and analytics.
  • Lead the design of machine learning pipelines, model deployment frameworks, and MLOps solutions.
  • Collaborate with data scientists, engineers, and analysts to operationalize ML models in production.
  • Evaluate and recommend tools, frameworks, and best practices for data science and AI initiatives.
  • Ensure compliance with data governance, security, and privacy standards.
  • Provide technical leadership and mentorship to the data science and engineering teams.
  • Optimize cloud and on-premises data architectures for performance, cost, and scalability.
  • Drive innovation through proof-of-concepts (POCs) and pilot implementations of emerging AI/ML technologies.

Key Skills, Qualifications and Experience Needed [The candidate must demonstrate these in all stages of assessment]



  • A bachelor's degree in computer science, Information Technology, or related discipline.
  • 3 to 4 years of professional experience in Technical Architect – Data Science roles.
  • Should have strong proficiency in programming and scripting languages such as Python, R, SQL, Java, Scala, and Shell scripting.
  • They should be adept at using data science and machine learning libraries including NumPy, Pandas, Scikit-learn, TensorFlow, PyTorch, Keras, XGBoost, and LightGBM for building and deploying advanced analytical models.
  • A solid understanding of data engineering and big data ecosystems is essential, with hands-on experience using Apache Airflow, Luigi, and dbt for data workflow orchestration, and familiarity with Hadoop, Spark, Hive, Kafka, and Flink for distributed data processing.
  • Expertise in working with both relational and NoSQL databases such as PostgreSQL, MySQL, Oracle, MongoDB, Cassandra, and Redis is required, along with experience in managing data lakes and data warehouses like Snowflake, Databricks, Amazon Redshift, Google BigQuery, and Azure Synapse.
  • The architect should have deep experience with cloud platforms—including AWS (S3, Glue, SageMaker, EMR, Lambda), Microsoft Azure (Data Lake, Synapse, ML Studio, Databricks), and Google Cloud Platform (BigQuery, Vertex AI, Dataflow, AI Platform)—and the ability to design scalable, cloud-native data solutions.
  • Proficiency in MLOps and DevOps tools such as MLflow, Kubeflow, DVC, and TensorFlow Extended (TFX) is required to enable model lifecycle management.
  • Knowledge of CI/CD pipelines using tools like Jenkins, GitHub Actions, Azure DevOps, or CircleCI, and experience with containerization and orchestration through Docker, Kubernetes, and Helm, is highly desirable. Familiarity with model monitoring and governance tools such as Evidently AI, WhyLabs, and Neptune.ai will be advantageous.
  • The role also requires expertise in data visualization and business intelligence tools including Power BI, Tableau, Looker, Superset, Plotly, and Dash for translating analytical insights into actionable business intelligence.
  • Additionally, strong understanding of API design and integration (REST, GraphQL), version control systems (Git, GitLab), and data security and compliance frameworks such as GDPR and HIPAA is important.

Qualifications: Bachelor's degree or above in the UK or Equivalent.


Salary: GBP 55,000 to GBP 65,000 per annum


Published Date: 03 November 2025


Closing Date: 02 December 2025


Evaluation: CV Review, Technical Test, Personal and Technical Interview and References


Job Type: Full-time, Permanent [Part time and Fixed Term option is available]


#J-18808-Ljbffr

Related Jobs

View all jobs

Director, Quantitative Analytics & MLOps

Principal Data Engineer

Senior Data Science Consultant, AWS Professional Services

Senior Data Science Consultant, AWS Professional Services

Senior Data Science Consultant, AWS Professional Services

Engineering Manager - Data Science Team

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.