Tech Lead (Gen AI) - UK

Photon
1 year ago
Applications closed

Related Jobs

View all jobs

MLOps Tech Lead

MLOps Tech Lead

Hybrid GCP Data Engineering Tech Lead

Machine Learning Engineer

Machine Learning Engineer - Tech Lead

Data Engineer Manager

Key Responsibilities: 

Lead the creation of a POC for using generative AI in software development, demonstrating its potential to improve efficiency, quality, and innovation.  Collaborate with software development teams to integrate generative AI solutions into existing workflows.  Lead and mentor a team of data engineers, providing technical guidance and fostering a collaborative team environment.  Design, develop, and implement generative AI applications using Python.  Work closely with stakeholders to understand business requirements and translate them into technical solutions.  Drive the development and execution of data engineering strategies to support business objectives.  Develop and maintain scalable data pipelines, API and model deployments, and workflows.  Communicate complex analytical findings and insights to non-technical stakeholders in a clear and concise manner.  Stay current with industry trends, best practices, and emerging technologies in data analytics, generative AI, and Python programming. 

Qualifications: 

Bachelor’s or Master’s degree in Computer Science, Data Science, Statistics, Mathematics, or a related field.  5+ years of experience in data engineering and AI, with at least 2 years in a leadership or supervisory role.  Proficiency in Python programming and its libraries (. pandas, numpy, scikit-learn, matplotlib, seaborn).  Experience with cloud platforms (., AWS, Azure, Google Cloud) and their data analytics and AI services.  Strong understanding of statistical analysis, machine learning, and data mining techniques.  Experience with generative AI models (., GPT, GANs) and their applications in software development.  Experience with big data technologies (., Hadoop, Spark) and data visualization tools (., Tableau, Power BI) is a plus.  Solid experience with SQL and database management.  Excellent problem-solving skills and the ability to work independently and as part of a team.  Strong communication and interpersonal skills, with the ability to effectively convey technical concepts to non-technical stakeholders. 

Preferred Qualifications: 

Knowledge of data governance and data privacy regulations.  Experience in agile development methodologies. 

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.