Supply Chain Operations Planner

Total Energies
Edinburgh
1 month ago
Applications closed

Related Jobs

View all jobs

Supply Chain Data Analyst CGT

AI & Data Engineer - KTP Associate

Supply Chain Analyst

Director of Data Science & AI – Global Manufacturing Transformation

Data Analyst - Sustainability

Director of Artificial Intelligence - Manufacturing & Industrial

Context & Environment

This role is based at the Ferrybridge blending plant. There may be requirements for the jobholder to visit third party warehouses, suppliers or the oil blending plant. The job holder will provide cover for the Supply Chain Services Department.

Activities

SAP Data Management & Control - Stock Control

• Management and procurement of all finished pack products into Distribution Warehouse 2LCR.
• Analysis stock holding levels for all finished pack products, consolidated stock file maintenance and review.
• Manage, Review, confirm and expedite replenishment requirements for Packaging 2L10
• Determine optimum stock holding levels for empty packages and labels, maintain reorder points,
• rounding values, frequency of ordering, monthly usages for packaging 2L10
• Control replenishment stocks all plants of empty IBCs, barrels and pallets and collection from customers. Maximize re-usability for all packaging items
• Stock Control start to end AdBlue Supply Chain process.
• Maintain SAP Supplier price contracts -direct ship purchase orders, base oils & finished products
• Direct ship order process 2L90, 2L91, 2LCP order goods/arrange transportation
• Outstanding order reports 2LCR, 2L90, 2L91.2L92, 2LCP,2L10 Primary Logistics
• Manage logistic for Import International Loads

Vendor Control

• Obtain certificates and update supplier ISO database
• Request CoA's when required • Control Vendor Non-conformiti es and coordinate with Customer complaints process.
• GRIR report
Service and efficiency
• Analyze raw material and finished product usage and demand monthly
• Review monthly cost change impacts opportunities to reduce and optimize
• Supply Chain Services Monthly KPI reporting and weekly analysis. Identifying areas of concerns #
Other
• Logistics cover

Candidate Profile

  • Experienced data analyst..
  • Knowledge of supply chain activities.
  • Enthusiastic, proactive, flexible and highly organized.
  • High level of PC literacy, data analytical software including MS Excel.
  • SAP
  • Excellent communication skills required. Must be able to communicate effectively at all levels of business.
  • Predominantly Monday to Friday, however, must be willing to work extra hours where necessary


Additional Information

TotalEnergies values diversity, promotes individual growth and offers equal opportunity careers.

Apply

  • Facebook
  • Email
  • X
  • LinkedIn


<

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.