National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Statistics Specialist

NIIT
Glasgow
7 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Science Consultant – Econometrics specialist

Lead Data Scientist - UK 12 Month FTC

Data Scientist - Consultant

Lead Data Scientist - Fraud

Data Scientist

Data Scientist

About the company:


NIIT is a leading Skills and Talent Development Corporation that is building a manpower pool for global industry requirements. The company, which was set up in 1981 to help the nascent IT industry overcome its human resource challenges, today ranks among the world’s leading training companies owing to its vast, yet comprehensive array of talent development programs. With a footprint across 40 nations, NIIT offers training and development solutions to Individuals, Enterprises, and Institutions.


Link for our LinkedIn page:https://www.linkedin.com/company/niitmts/mycompany/


Link for our website: https://www.niit.com/en/learning-outsourcing/


Position: Statistical Trainer

Location: Europe (Remote)

Job type: Freelance contract



At least 3 years experience in developing (program, training material, contents) training courses or participating in the provision of training courses.

Must have a level of education that corresponds to completed university studies attested by a diploma when the normal period of university education is four years or more.

Must have a minimum of 3 years working experience or a PhD in statistics, economy or an equivalent domain, relevant for the statistical field(s) for which he/she is proposed. A Master degree from an EMOS labelled university (or equivalent) counts as up to two years of working experience.



Statistical methods and tools in production and innovation management in official statistics:


Statistical fields:


• European Statistical System (ESS) – Introduction, organization and governance, legal

framework

• Enterprise Architecture (EA) for official statistics

• Design of statistical processes including data collection

• Data integration, validation, editing and imputation

• Estimation, time series analysis, seasonal adjustment

• Econometrics

• Data ethics and privacy

• Methods for input privacy (privacy enhancing technologies)

• Methods for output privacy (Statistical disclosure control and confidentiality)

• Geospatial information in statistics

• Information standards and technologies for describing, exchanging and disseminating

data and metadata

• Statistical classifications

• Data Quality and Quality reporting

• Big data sources, tools and Trusted Smart Statistics

• Data engineering

• Big data analytics

• Processing of large structured, unstructured, (close to) real time, and sensor data

• Artificial intelligence, machine learning, Bayesian inference, statistical modelling

• Languages for statistical computing and graphics

• Visualization and communication with statistics

• Publication and dissemination

• Relation with Media

• Skills enhancement and training

• Project, Programmed and Portfolio Management

• Data stewardship

• Relation with stakeholders

• Innovation and change management

• Data science skills for the next generation of statisticians

• Sampling

• Web scraping and online/smart data

Sectoral and Regional statistics


Statistical fields:


• Environmental economic accounts

• Agriculture and fisheries

• Transport

• Energy

• Waste statistics

• Water statistics

• Statistical cartography

• Environmental statistics and accounts; sustainable development

• Regional statistics and geographical information

Macro-economics, Social and Business statistics


Statistical fields:


• National Accounts

• Balance of Payments statistics

• Theory and practice of Harmonised Indices of Consumer Prices (HICP)

• Innovative data collection in Social Statistics

• Business statistics

• Business registers/EuroGroups register

• Financial information analysis to support business statistics

• Demography, Population and migration

• Labour Market


NIIT is an equal-opportunity employer. We evaluate qualified applicants without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, veteran status, or any other protected characteristic.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.