Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Staff Data Scientist, EMEA

Airwallex
London
3 weeks ago
Create job alert

About Airwallex

Airwallex is the only unified payments and financial platform for global businesses. Powered by our unique combination of proprietary infrastructure and software, we empower over 150,000 businesses worldwide – including Brex, Rippling, Navan, Qantas, SHEIN and many more – with fully integrated solutions to manage everything from business accounts, payments, spend management and treasury, to embedded finance at a global scale.

Proudly founded in Melbourne, we have a team of over 1,700 of the brightest and most innovative people in tech across 26 offices around the globe. Valued at US$6.2 billion and backed by world-leading investors including Visa, Airtree, Blackbird, Sequoia, DST Global, Greenoaks, Salesforce Ventures, Lone Pine, and Square Peg, Airwallex is leading the charge in building the global payments and financial platform of the future. If you’re ready to do the most ambitious work of your career, join us.

About the team

The Global Revenue Data Science team provides Airwallex’s Leadership with the data, tooling, and insights needed to amplify Airwallex’s rapid growth. We partner across the entire business, giving us an overarching view and opinion on what Airwallex should prioritize. Our expertise spans the full data stack, and we use it to tackle complex data problems that will shape the future of global fintech. The team is growing quickly, and currently based in the US, China, and Singapore.

What you’ll doResponsibilities:

  • Be the go-to data partner for the CEO and Regional Business Leads.

  • Partner with Finance, Data Engineering, and Product to align metric definitions/dimensions and data sources across the business.

  • Use causal inference methods to understand how macroeconomic events impact the business.

  • Leverage AI to generate insights and improve business and team efficiency.

  • Lead Airwallex’s forecasting efforts by 1) building tools that aggregate and evaluate forecasts 2) applying advanced statistical methods to build your own forecasts.

  • Scope and build data products. In some cases building MVPs, and in others, fully fleshed out solutions.

  • Mentor junior team members and cultivate an environment grounded in technical excellence, clear communication, and proactive critical thinking.

Who you are

We're looking for people who meet the minimum qualifications for this role. The preferred qualifications are great to have, but are not mandatory.

Minimum qualifications:

  • 7+ years industry experience and an advanced degree (PhD or MS) in a quantitative field (e.g. Statistics, Engineering, Sciences, Computer Science, Economics)

  • Excellent communication skills, ideally with a proven track record of working directly with executive-level stakeholders to influence strategy.

  • Expertise in causal inference methods and forecasting.

  • Expertise in data querying languages (e.g. SQL) and scripting languages (e.g. Python, R).

  • Experience with data architecture technologies such as Airflow, Databricks, and dbt.

Preferred qualifications:

  • Experience in technology, financial services and/or a high growth environment.

  • Experience with Excel and Finance systems (e.g. Oracle).

#sanfrancisco

Equal opportunity

Airwallex is proud to be an equal opportunity employer. We value diversity and anyone seeking employment at Airwallex is considered based on merit, qualifications, competence and talent. We don’t regard color, religion, race, national origin, sexual orientation, ancestry, citizenship, sex, marital or family status, disability, gender, or any other legally protected status when making our hiring decisions. If you have a disability or special need that requires accommodation, please let us know.

Airwallex does not accept unsolicited resumes from search firms/recruiters. Airwallex will not pay any fees to search firms/recruiters if a candidate is submitted by a search firm/recruiter unless an agreement has been entered into with respect to specific open position(s). Search firms/recruiters submitting resumes to Airwallex on an unsolicited basis shall be deemed to accept this condition, regardless of any other provision to the contrary.


#J-18808-Ljbffr

Related Jobs

View all jobs

Lead Data Scientist

Staff Data Scientist

Staff Data Scientist

Staff Data Scientist

Staff Data Scientist

Staff Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.