Sr. Solutions Architect (Cloud Data, Life Science, ELN, LIMS) - Europe Remote

Seekup Strategies
London
2 months ago
Applications closed

Related Jobs

View all jobs

Director, Data Engineering Solutions - Growth

Data Scientist

▷ Urgent Search! Sr. Data Scientist, FCGT

Sr Data Science Manager, Professional Services

e-Discovery Manager

Senior Data Analyst

Senior Solutions Architect · Remote Europe · Full-time

Our Client is a leader in providing advanced cloud-based solutions that transform how scientific data is managed and utilized. Dedicated to improving and extending human life, Our Client combines a cutting-edge, collaborative cloud platform with deep expertise to drive innovation and accelerate scientific breakthroughs. By enabling seamless integration of data, Our Client empowers scientists and researchers to unlock new possibilities through AI-driven insights and next-generation laboratory solutions.

Role Overview

As a Solutions Architect, you will partner with clients in the pharmaceutical and biotechnology sectors to design and deliver innovative solutions that address complex data challenges. Your role will involve collaborating with RD teams, analyzing data environments, developing tailored strategies, and ensuring seamless integration with client systems.

This is a highly technical role that bridges the gap between business and technology, requiring you to translate complex scientific and IT requirements into impactful solutions. You will collaborate with internal teams, including sales, engineering, and product, while fostering strong relationships with external stakeholders.

Key Responsibilities

Client Engagement:

  • Work closely with laboratory teams, researchers, and IT professionals to understand workflows and challenges. Develop solutions that address their needs using Our Client’s platform.
  • Act as a trusted advisor, guiding clients through the implementation process and supporting their adoption of our tools.
  • Gather and synthesize feedback from clients to continuously enhance the platform and related solutions.

Solution Design:

  • Develop customized solutions that map technical capabilities to business objectives.
  • Provide strategic insights into how seamless data integration and AI tools can improve laboratory operations and outcomes.
  • Collaborate with internal product and engineering teams to ensure solutions align with client requirements and long-term vision.

Sales Enablement:

  • Support sales efforts by showcasing the value of Our Client’s platform through tailored presentations, product demonstrations, and consultations.
  • Develop responses to Requests for Information (RFIs), Requests for Proposals (RFPs), and Statements of Work (SOWs).
  • Identify opportunities to deepen client engagement and expand platform adoption.

Project Coordination:

  • Ensure project timelines and deliverables are met by effectively managing internal and external stakeholders.
  • Communicate technical solutions in an accessible manner, facilitating alignment among diverse teams.
  • Drive customer success by assisting with change management and ensuring smooth integration.

Skills and Expertise

Technical Proficiency:

  • Strong background in scientific data management, with a focus on life sciences research.
  • Expertise with laboratory systems, including but not limited to ELN, LIMS, CDS, and data visualization tools.
  • Knowledge of pharmaceutical RD processes, from discovery to manufacturing. Experience with large molecule or emerging modalities is a plus.
  • Familiarity with cloud platforms and data architecture, particularly AWS, is preferred.

Soft Skills:

  • Excellent communication skills, with the ability to simplify complex technical concepts for non-technical audiences.
  • Proven ability to build relationships and collaborate effectively with diverse stakeholders.
  • Strong problem-solving and negotiation skills, with a focus on delivering value for all parties.

Business Acumen:

  • Ability to calculate ROI for proposed solutions and demonstrate the business impact of Our Client’s offerings.
  • In-depth understanding of challenges and trends within the life sciences sector.

Requirements

  • A scientific background or at least 8 years of experience in life sciences RD IT or informatics. Experience as a bench scientist or data scientist is a significant advantage.
  • Demonstrated success in enterprise sales within the pharmaceutical industry.
  • A passion for innovation, intellectual curiosity, and a desire to thrive in a fast-paced, dynamic environment.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.