National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Sr. Solutions Architect (Cloud Data, ELN, LIMS) - Europe remote

SeekUp
London
5 months ago
Applications closed

Related Jobs

View all jobs

Sr. Data Scientist / Machine Learning Engineer - GenAI & LLM

Sr. Data Scientist / Machine Learning Engineer - GenAI

Sr. Data Scientist / Machine Learning Engineer - GenAI

Sr. Delivery Consultant - Data Scientist, AWS Professional Services Israel...

Sr Lead Data Engineer

Sr Lead Data Engineer | London, UK

Senior Solutions Architect · Remote Europe · Full-time

Our Client is a leader in providing advanced cloud-based solutions that transform how scientific data is managed and utilized. Dedicated to improving and extending human life, Our Client combines a cutting-edge, collaborative cloud platform with deep expertise to drive innovation and accelerate scientific breakthroughs. By enabling seamless integration of data, Our Client empowers scientists and researchers to unlock new possibilities through AI-driven insights and next-generation laboratory solutions.

Role Overview

As a Solutions Architect, you will partner with clients in the pharmaceutical and biotechnology sectors to design and deliver innovative solutions that address complex data challenges. Your role will involve collaborating with R&D teams, analyzing data environments, developing tailored strategies, and ensuring seamless integration with client systems.

This is a highly technical role that bridges the gap between business and technology, requiring you to translate complex scientific and IT requirements into impactful solutions. You will collaborate with internal teams, including sales, engineering, and product, while fostering strong relationships with external stakeholders.

Key Responsibilities

Client Engagement:

  • Work closely with laboratory teams, researchers, and IT professionals to understand workflows and challenges. Develop solutions that address their needs using Our Client’s platform.
  • Act as a trusted advisor, guiding clients through the implementation process and supporting their adoption of our tools.
  • Gather and synthesize feedback from clients to continuously enhance the platform and related solutions.

Solution Design:

  • Develop customized solutions that map technical capabilities to business objectives.
  • Provide strategic insights into how seamless data integration and AI tools can improve laboratory operations and outcomes.
  • Collaborate with internal product and engineering teams to ensure solutions align with client requirements and long-term vision.

Sales Enablement:

  • Support sales efforts by showcasing the value of Our Client’s platform through tailored presentations, product demonstrations, and consultations.
  • Develop responses to Requests for Information (RFIs), Requests for Proposals (RFPs), and Statements of Work (SOWs).
  • Identify opportunities to deepen client engagement and expand platform adoption.

Project Coordination:

  • Ensure project timelines and deliverables are met by effectively managing internal and external stakeholders.
  • Communicate technical solutions in an accessible manner, facilitating alignment among diverse teams.
  • Drive customer success by assisting with change management and ensuring smooth integration.

Skills and Expertise

Technical Proficiency:

  • Strong background in scientific data management, with a focus on life sciences research.
  • Expertise with laboratory systems, including but not limited to ELN, LIMS, CDS, and data visualization tools.
  • Knowledge of pharmaceutical R&D processes, from discovery to manufacturing. Experience with large molecule or emerging modalities is a plus.
  • Familiarity with cloud platforms and data architecture, particularly AWS, is preferred.

Soft Skills:

  • Excellent communication skills, with the ability to simplify complex technical concepts for non-technical audiences.
  • Proven ability to build relationships and collaborate effectively with diverse stakeholders.
  • Strong problem-solving and negotiation skills, with a focus on delivering value for all parties.

Business Acumen:

  • Ability to calculate ROI for proposed solutions and demonstrate the business impact of Our Client’s offerings.
  • In-depth understanding of challenges and trends within the life sciences sector.

Requirements

  • A scientific background or at least 8 years of experience in life sciences R&D IT or informatics. Experience as a bench scientist or data scientist is a significant advantage.
  • Demonstrated success in enterprise sales within the pharmaceutical industry.
  • A passion for innovation, intellectual curiosity, and a desire to thrive in a fast-paced, dynamic environment.

#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.