Sr. Data Scientist, FCGT

Amazon
London
6 months ago
Applications closed

Amazon strives to be Earth's most customer-centric company where people can find and discover virtually anything they want to buy online. Amazon's evolution is driven by the spirit of innovation that is part of the company's DNA.


Amazon Seller Services is looking for a Data Scientist to work hands on from concept to delivery on generative AI, statistical analysis, prescriptive and predictive analysis, and machine learning implementation projects. We are looking for a problem solver with strong analytical skills and a solid understanding of statistics & Machine learning algorithms as well as a practical understanding of collecting, assembling, cleaning and setting up disparate data from enterprise systems.


Key Job Responsibilities

  1. Ability to understand a business problem and the available data and identify what statistical or ML techniques can be applied to answer a business question.
  2. Given a business problem, estimate solution feasibility and potential approaches based on available data.
  3. Understand what data is available, where, and how to pull it together. Work with partner teams where needed to facilitate permissions and acquisition of required data.
  4. Quickly prototype solutions and build models to test feasibility of solution approach.
  5. Build statistical models/ ML models, train and test them to drive towards the optimal level of model performance.
  6. Improve existing processes with development and implementation of state of the art generative AI models.
  7. Work with technology teams to integrate models by wrapping them as services that plug into Amazon's marketplace and fulfillment systems.
  8. Work across the spectrum of reporting and data visualization, statistical modeling and supervised learning tools and techniques and apply the right level of solution to the right problem.
  9. The problem set covers aspects of detecting fraud and abuse, improving performance, driving lift and adoption, recommending the right upsell to the right audience, cost saving, selection economics and several others.

BASIC QUALIFICATIONS

  • 5+ years of data querying languages (e.g. SQL), scripting languages (e.g. Python) or statistical/mathematical software (e.g. R, SAS, Matlab, etc.) experience.
  • 5+ years of data scientist experience.
  • Experience with statistical models e.g. multinomial logistic regression.

PREFERRED QUALIFICATIONS

  • Experience working with data engineers and business intelligence engineers collaboratively.
  • Experience managing data pipelines.
  • Experience as a leader and mentor on a data science team.

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visitthis linkfor more information.

Posted:January 15, 2025

Posted:November 25, 2024

Posted:December 12, 2024

Posted:January 10, 2025

Posted:January 9, 2025

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.