Sr. Data Scientist, FCGT

Amazon
London
5 months ago
Applications closed

Related Jobs

View all jobs

Senior Clinical Data Scientist, CDM Europe – Hybrid UK

Senior Clinical Data Scientist, CDM Europe (Hybrid)

Senior Data Scientist, Live Product Analytics

Senior Data Scientist, Live Product Analytics

Senior Data Scientist

Data Scientist

Amazon strives to be Earth's most customer-centric company where people can find and discover virtually anything they want to buy online. Amazon's evolution is driven by the spirit of innovation that is part of the company's DNA.


Amazon Seller Services is looking for a Data Scientist to work hands on from concept to delivery on generative AI, statistical analysis, prescriptive and predictive analysis, and machine learning implementation projects. We are looking for a problem solver with strong analytical skills and a solid understanding of statistics & Machine learning algorithms as well as a practical understanding of collecting, assembling, cleaning and setting up disparate data from enterprise systems.


Key Job Responsibilities

  1. Ability to understand a business problem and the available data and identify what statistical or ML techniques can be applied to answer a business question.
  2. Given a business problem, estimate solution feasibility and potential approaches based on available data.
  3. Understand what data is available, where, and how to pull it together. Work with partner teams where needed to facilitate permissions and acquisition of required data.
  4. Quickly prototype solutions and build models to test feasibility of solution approach.
  5. Build statistical models/ ML models, train and test them to drive towards the optimal level of model performance.
  6. Improve existing processes with development and implementation of state of the art generative AI models.
  7. Work with technology teams to integrate models by wrapping them as services that plug into Amazon's marketplace and fulfillment systems.
  8. Work across the spectrum of reporting and data visualization, statistical modeling and supervised learning tools and techniques and apply the right level of solution to the right problem.
  9. The problem set covers aspects of detecting fraud and abuse, improving performance, driving lift and adoption, recommending the right upsell to the right audience, cost saving, selection economics and several others.

BASIC QUALIFICATIONS

  • 5+ years of data querying languages (e.g. SQL), scripting languages (e.g. Python) or statistical/mathematical software (e.g. R, SAS, Matlab, etc.) experience.
  • 5+ years of data scientist experience.
  • Experience with statistical models e.g. multinomial logistic regression.

PREFERRED QUALIFICATIONS

  • Experience working with data engineers and business intelligence engineers collaboratively.
  • Experience managing data pipelines.
  • Experience as a leader and mentor on a data science team.

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visitthis linkfor more information.

Posted:January 15, 2025

Posted:November 25, 2024

Posted:December 12, 2024

Posted:January 10, 2025

Posted:January 9, 2025

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.