National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Sr Data Scientist

Campaign Monitor
4 months ago
Applications closed

Related Jobs

View all jobs

Sr. Data Scientist - Advanced AI Research & Next-Gen ML (Remote, GBR)

Sr. Data Scientist, Apple Pay Analytics

Sr. Data Scientist, FCGT...

Sr. Data Scientist / Machine Learning Engineer - GenAI [Urgent]...

Sr. Data Scientist / Machine Learning Engineer - GenAI

Data Scientist III, ROW AOP

The Company:

Marigold helps brands foster customer relationships through the science and art of connection. Marigold Relationship Marketing is a suite of world-class martech solutions that help marketers create long term customer love and loyalty. Marigold provides the most comprehensive set of use cases for marketers at any level. Headquartered in Nashville, Tennessee, Marigold has offices globally across the United States, Europe, Australia, New Zealand, South America and Central America, as well as in Japan.
 

What You’ll Do:

Collaborate with product, engineering, and data science teams to design, develop, and deploy highly scalable solutions

Work through all phases of the data science life cycle, including data collection, cleaning, analysis, modeling, validation, and deployment

Research, fine-tune, benchmark and align Large Language Models for practical application in digital marketing

Investigate, analyze, and address data quality issues and model performance issues in a timely manner

Deliver technical documentation and reports for use by internal teams, customers, and partners

Conduct exploratory data analysis to identify trends, patterns, and insights that will inform model development

Ideal Qualifications:

Degree in Data Science, Computer Science, Statistics, or a related field, or equivalent combination of education and experience

7+ years of experience in data science, with a focus on deploying models in enterprise, high-scale environments

Advanced understanding of statistical modeling, machine learning algorithms, and data analysis techniques

Proficient in Python, R, or similar languages for data science, and performance tuning of models

Experience working with SQL databases such as MySQL, PostgreSQL, or equivalent

Experience with big data processing tools such as Apache Spark, Databricks, Clickhouse, or equivalent

Excellent communication skills, both verbal and written, with the ability to explain complex technical concepts to non-technical stakeholders

Demonstrated ability to produce clear and concise technical documentation

Nice to Have:

Experience with Large Language Models, Retrieval Augmented Generation, Embeddings, and Vector Databases in a production environment

Experience with real-time data streaming and processing frameworks such as Kafka, Kinesis, or similar

Advanced experience working with distributed computing and big data technologies such as Databricks, Snowflake, Clickhouse or similar

Experience delivering data models and insights at scale, processing and analyzing large datasets in real time

What We Offer: (Required)

The competitive salary and benefits you’d expect!

Generous time off (we call it Open Time Away) as well as paid holidays and a birthday benefit day off.

Retirement contributions. 

Employee-centric and supportive remote work environment with flexibility.

Support for life events including paid parental leave.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.