Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Sr Data Scientist

Campaign Monitor
8 months ago
Applications closed

Related Jobs

View all jobs

Sr. Data Scientist, GenAI Algorithms (Based in Dubai)

AI Sr. Data Engineer

Sr Data Analyst

AI Sr. Data Engineer

Associate Director, AI Data Scientist

Data Engineer - GCP services & DBT

The Company:

Marigold helps brands foster customer relationships through the science and art of connection. Marigold Relationship Marketing is a suite of world-class martech solutions that help marketers create long term customer love and loyalty. Marigold provides the most comprehensive set of use cases for marketers at any level. Headquartered in Nashville, Tennessee, Marigold has offices globally across the United States, Europe, Australia, New Zealand, South America and Central America, as well as in Japan.
 

What You’ll Do:

Collaborate with product, engineering, and data science teams to design, develop, and deploy highly scalable solutions

Work through all phases of the data science life cycle, including data collection, cleaning, analysis, modeling, validation, and deployment

Research, fine-tune, benchmark and align Large Language Models for practical application in digital marketing

Investigate, analyze, and address data quality issues and model performance issues in a timely manner

Deliver technical documentation and reports for use by internal teams, customers, and partners

Conduct exploratory data analysis to identify trends, patterns, and insights that will inform model development

Ideal Qualifications:

Degree in Data Science, Computer Science, Statistics, or a related field, or equivalent combination of education and experience

7+ years of experience in data science, with a focus on deploying models in enterprise, high-scale environments

Advanced understanding of statistical modeling, machine learning algorithms, and data analysis techniques

Proficient in Python, R, or similar languages for data science, and performance tuning of models

Experience working with SQL databases such as MySQL, PostgreSQL, or equivalent

Experience with big data processing tools such as Apache Spark, Databricks, Clickhouse, or equivalent

Excellent communication skills, both verbal and written, with the ability to explain complex technical concepts to non-technical stakeholders

Demonstrated ability to produce clear and concise technical documentation

Nice to Have:

Experience with Large Language Models, Retrieval Augmented Generation, Embeddings, and Vector Databases in a production environment

Experience with real-time data streaming and processing frameworks such as Kafka, Kinesis, or similar

Advanced experience working with distributed computing and big data technologies such as Databricks, Snowflake, Clickhouse or similar

Experience delivering data models and insights at scale, processing and analyzing large datasets in real time

What We Offer: (Required)

The competitive salary and benefits you’d expect!

Generous time off (we call it Open Time Away) as well as paid holidays and a birthday benefit day off.

Retirement contributions. 

Employee-centric and supportive remote work environment with flexibility.

Support for life events including paid parental leave.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.