Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Sr. AI Lead (Gen AI)

Wm. Wrigley Jr.
Maidenhead
7 months ago
Applications closed

Related Jobs

View all jobs

Sr. AI Data Engineer (UK Remote)

Sr. AI Data Engineer (UK Remote)

Sr. AI Data Engineer (UK Remote)

Sr. AI Data Engineer (UK Remote)

Sr. AI Data Engineer (UK Remote)

Sr. AI Data Engineer (UK Remote)

Job Description:

Chief Data Office (CDO) is a Mars Wrigley program that harnesses the power of data and insights to solve some of the critical business-wide problems we face – unlocking quality growth andoperationalexcellence.

Through CDO, we deliver connected insights across the entire Snacking ecosystem. We empower our Associates with the right data, tools and capabilities so they can take decisive action, maximizing value and making a meaningful impact on our consumers, our customers and our business.

This position will play a key role in leading the Mars Snacking ecosystem into the ever-evolving world of Generative AI. This role will lead Gen AI projects in planning and execution across varying types of use cases (creative and processionary). They will create and define frameworks, guidelines and standards to make sure that Mars Snacking is taking full advantage of this field.

They will also be expected to play hands-on when required and be able to guide the broader Data Science community through complex Gen AI and LLMOps projects.

What are we looking for?

  • 7+ years of experience working in a quantitative role preferably in the CPG, or retail industry.
  • 4+ years of experience managing a team of data scientists, product analysts or data analysts
  • Proven track record of delivering value through AI/ Data Science products in a fast-paced,agileenvironment using a scalable and reusable codebase and models to address business problems effectively.
  • Partner with businessleadershipacross functions to identify business challenges and opportunities and translate them unto actionable, integrated, data-driven solutions.
  • An expert understanding of LLMs, ML Ops, LLM Ops and pertinent design architecture elements.
  • An understanding of product management principles such as product definition, roadmap building and management, and product releases and commercialization
  • Hands on experience in building Agents and leveraging emerging technologies within Microsoft and Google to design an agentic ecosystem.
  • A strong customer centric mindset especially within an internal customer base with the purpose of driving value creation, adoption and use
  • Strategic thinking, problem solving and innovation, with the ability to anticipate and navigate challenges and opportunities. 
  • Ensure compliance with analytics standards, including tailoring methodologies to specific use case needs such as ML, AI, and descriptive analytics.
  • Ability to translate business needs into analytical frameworks & superior verbal and written communication skills
  • Proficiency and hands-on experience in advanced analytics techniques and machine learning algorithms, including NLP, time-series analysis and other relevant methods and willingness to coach data scientists tactically 
  • Working understanding of ML Ops and DevOps frameworks
  • Working expertise of OpenAI Endpoints, Google Vertex, Google Model Garden and Microsoft Suite of AI Models.

What will be your key responsibilities?

  • Serve as the key lead for Gen AI and LLM Ops in the Mars Snacking Community
  • Applies strong expertise in AI through use of machine learning, data mining, and statistical models to design, prototype and build next generation ML engines and services 
  • Design, architect and review technical architecture of data science solutions
  • Plan and lead data science projects that cover a diverse range of business problems
  • Serve as key point of contact with Data Engineering and DevOps teams, for solution architecture and infrastructure design
  • Review work of team members identifying optimum methodologies, advising on implementation, and checking business logic
  • Use machine learning techniques, visualizations, & statistical analysis to gain insight into various data sets – some readily available, and some you create and curate yourself 
  • Collaborate with internal and external teams to ensure we focus on product and service recommendations and be a key player in our network of talent
  • Contribute to a high performing data science function 
  • Create repeatable, interpretable, dynamic and scalable models that are seamlessly incorporated into analytic data products
  • Performance Monitoring: Define key performance indicators (KPIs) and implement monitoring systems for deployed data platforms and products to ensure efficient operations data operations, effective support services and incident management.
  • Solution ideation and Development: Guide a team of data scientists to create fit for purpose solutions using cutting edge analytical and AI methodologies.
  • Focus on setting up a Data Science AI program and delivery methodology: Entails, recruiting and forming a team to solve a specific problem; elaborating on a programmatic mindset and tracking value delivery

What can you expect from Mars?

  • Work with diverse and talented Associates, all guided by the Five Principles.
  • Join a purpose driven company, where we’re striving to build the world we want tomorrow, today.
  • Best-in-class learning and development support from day one, including access to our in-house Mars University.
  • An industry competitive salary andbenefitspackage, including company bonus.

#TBDDT

Mars is an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability status, protected veteran status, or any other characteristic protected by law. If you need assistance or an accommodation during the application process because of a disability, it is available upon request. The company is pleased to provide such assistance, and no applicant will be penalized as a result of such a request.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.

Why the UK Could Be the World’s Next Machine Learning Jobs Hub

Machine learning (ML) is becoming essential to industries across the globe—from finance and healthcare to retail, logistics, defence, and the public sector. Its ability to uncover patterns in data, make predictions, drive automation, and increase operational efficiency has made it one of the most in-demand skill sets in the technology world. In the UK, machine learning roles—from engineers to researchers, product managers to analysts—are increasingly central to innovation. Universities are expanding ML programmes, enterprises are scaling ML deployments, and startups are offering applied ML solutions. All signs point toward a surging need for professionals skilled in modelling, algorithms, data pipelines, and AI systems. This article explores why the United Kingdom is exceptionally well positioned to become a global machine learning jobs hub. It examines the current landscape, strengths, career paths, sector-specific demand, challenges, and what must happen for this vision to become reality.