SQL Software Engineer II

JPMorgan Chase & Co.
Glasgow
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineering Lead

Senior Data Engineer - Remote, Lead Data Platform & AI

Asset & Wealth Management - Data Engineer - Associate - Birmingham

Data Engineer - Asset & Wealth Management (Cloud & ETL)

Data Engineer - SC Cleared

You’re ready to gain the skills and experience needed to grow within your role and advance your career — and we have the perfect software engineering opportunity for you.

As a SQL Software Engineer II at JPMorgan Chase within the Corporate Risk Technology, you are part of an agile team that works to enhance, design, and deliver the software components of the firm’s state-of-the-art technology products in a secure, stable, and scalable way. As an emerging member of a software engineering team, you execute software solutions through the design, development, and technical troubleshooting of multiple components within a technical product, application, or system, while gaining the skills and experience needed to grow within your role.

Job responsibilities

Executes standard software solutions, design, development, and technical troubleshooting Writes secure and high-quality code using the syntax of at least one programming language with limited guidance Designs, develops, codes, and troubleshoots with consideration of upstream and downstream systems and technical implications Applies knowledge of tools within the Software Development Life Cycle toolchain to improve the value realized by automation Applies technical troubleshooting to break down solutions and solve technical problems of basic complexity Gathers, analyzes, synthesizes, and develops visualizations and reporting from large, diverse data sets in service of continuous improvement of software applications and systems Learns and applies system processes, methodologies, and skills for the development of secure, stable code and systems Adds to team culture of diversity, equity, inclusion, and respect Participate in regular standups and code reviews

Required qualifications, capabilities, and skills

Formal training or certification on software engineering concepts and applied experience with SQL (Advanced), ETL - Informatica & PL/SQL programming. Understanding of big data technologies and concepts. Hands-on practical experience in system design, application development, testing, and operational stability. Working knowledge of Shell scripting. Experience in resolving the data processing performance issues through improvements. Experience in projects with large data volumes, batch processing. Proficient in coding in one or more languages Experience in developing, debugging, and maintaining code in a large corporate environment with one or more modern programming languages and database querying languages Overall knowledge of the Software Development Life Cycle Solid understanding of agile methodologies such as CI/CD, Applicant Resiliency, and Security, Jules, Jenkins, Git/Stash Demonstrated knowledge of software applications and technical processes within a technical discipline (., cloud, artificial intelligence, machine learning, mobile,

Preferred qualifications, capabilities, and skills

Knowledge with Databricks, Cloudera Hadoop, Spark, HDFS, HBase, Hive, Python Programming, AWS technologies or Terraform

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.