Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

SQL and Data Engineer

Roxburgh's Court
1 day ago
Create job alert

We are looking for an SQL expert who is also codes in C#/.Net for an Edinburgh (hybrid) role focussed strongly on Data Engineering. The company is a scale-up B2B Fintech with huge runway and funding; they need to scale the product to meet growing demand. The role will be split between traditional support and Agile development across the Microsoft tech stack.

Key skills:

Extensive SQL(T-SQL) skills

Document processes, SQL scripts, and workflows

Strong C#/.Net Dev skillset - Build, maintain and optimise customer-facing reports and internal dashboards

Azure experience with SQL / App Services and Storage

The role:

Communicate with customers to problem solve and troubleshoot

Help with large data migrations and code to integrate

Build new tools for customers that are bespoke to their integration

Use SQL and C#/.Net to optimise and build new features

If you are keen APPLY NOW.

Bright Purple is an equal opportunities employer: we are proud to work with clients who share our values of diversity and inclusion in our industry

Related Jobs

View all jobs

Data Engineer

Senior Data Engineer in London - Harrison Holgate

Senior Data Engineer SQL BigQuery GCP

Senior Data Engineer Snowflake SQL Python

Senior Data Engineer Python AWS

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.