Solutions Architect

Computomic
Bristol
11 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

AWS Data Engineer | Senior Consultant

Principal Consultant - Data Engineering Lead

Lead Machine Learning Engineer / High Growth AI Start-Up

Senior Data Scientist - Optimisation

AWS Data Engineer   (Hybrid) Bristol

Computomic was founded in 2019 with a vision to design and deploy mission critical and highly differentiated Data & AI solutions for companies looking to migrate their data stack from legacy data platforms such as Teradata, Cloudera, Datastage and Informatica to modern data platforms like Databricks. Over the last few years, we have become a leading Databricks partner, building a strong and mature Databricks practice and delivering Databricks migration projects for some of the world’s leading companies.


Our consulting services and tooling help companies realize value from their data by modernizing their data stack to the latest data platform technologies like Databricks. We use accelerators that save companies up to 80% of time and money moving data from legacy platforms to Databricks. We help customers find margins of improvement in everything they do, which when aggregated creates a transformative effect on their business.


We are a nimble and rapidly growing company with a global footprint, and a focus on Data & AI, and Financial Crime Prevention solutions. We have built an impressive depth of Data & AI experts with over 40 trained and certified Databricks professionals; experts in BI/ Dashboarding tools such as PowerBI and Tableau; and experts in financial crime and fraud prevention.


Our name Computomic is derived from two words: Computers and Atomic. We believe in making one small change (Atomic) at a time, so that the cumulative effect of all the changes delivers a massive impact.


The Role

We are one of the fastest growing partners for Databricks and are looking for aPrincipal Engineer/Architectto help us build one of the most impactful Data & AI practices in the industry!

You will have the opportunity to shape the future of the Data & AI landscape at leading Fortune 500 companies and cutting-edge startups. You will work on the industry’s most challenging customer engagements to solve Data & AI problems using leading cloud platforms such as AWS/Azure/GCP and Databricks.


You will have the opportunity to work with some of the leading experts in the data and AI industry and develop a deep understanding of Databricks and adjacent technologies. You will be empowered to scope, negotiate and lead complex data migration projects, develop data and AI best practices and thought leadership, and represent both Computomic and Databricks at Industry forums and events.


You will join a team of experts with the autonomy and flexibility to make quick decisions, forge your own paths and adapt to the changing market and customers’ needs.


What you will be doing:

  1. Lead our rapidly growing Data & AI practice
  2. Hire, train and develop highly differentiated and diverse team of Data & AI experts
  3. Work directly with end customers and lead enterprise scale Data & AI projects
  4. Be the trusted behind-the-scenes SME who works to ensure success and delivery excellence across many engagements
  5. Function as a force multiplier by enabling our customers with reusable tools and packaged solutions
  6. Provide thought leadership in the areas of data engineering, data governance, data transformations, curation and data integration
  7. Develop data architecture blueprints, patterns and frameworks that will enable reuse and standardization
  8. Grow your practice by influencing sales deals and assist with scoping, solutioning and estimating effort
  9. Lead efforts to develop reusable frameworks, accelerators and internal product development


The skills you will bring:

  1. Working knowledge of three common cloud ecosystems (AWS, Azure, GCP) with expertise in at least one. With Strong abilities to provide a firm point of view on core cloud platform capabilities, security, and best practices
  2. Capable of designing and deploying highly performant end-to-end data architectures
  3. Strong integration & automation implementation skills
  4. Proven experience building reusable frameworks and packaged solutions for horizontal solutions (e.g. migrations, MLOps, observability)
  5. Ability to identify, debug bottlenecks and significantly optimize slow running data pipelines
  6. Experience migrating applications from legacy Hadoop or Data Warehouses to the cloud


Other nice to have skills:

  1. You bring an uncompromising Growth mindset
  2. Demonstrating prior Big 4 or proven consulting experience in strategy through execution projects is a plus
  3. Experience leading and working with large Cloud Data Platforms, Cloud Data migration or Enterprise Information Management programs
  4. You are highly motivated, creative in your approach to technical problems and know how to leverage both internal and external networks
  5. You invest in keeping technical skills updated and are constantly looking for the next big challenge
  6. You will bring both broad and deep knowledge in Data Engineering and can architect a solution by mapping a customer business problem to an end-to-end solution.
  7. You are resourceful, confident and composed under pressure


What we offer:

  1. Excellent Compensation, including bonuses
  2. 401k Plan
  3. Robust Health and Wellness Benefits
  4. Referral Program
  5. Paid Time Off and Sick Leave
  6. Professional Development Assistance
  7. Excellent work culture
  8. Remote/Hybrid working option
  9. Training & Certification on Databricks + adjacent technologies
  10. Career Development Plan including management/ leadership training


What else we offer:

  1. Work with cutting edge technologies
  2. Work with world class team members
  3. Work on the most interesting/ exciting/ varied projects - e.g. end-end/ complex migrations; FastStart/ Best Practices; F500/ SME companies
  4. Project responsibility/ independence - pre-sales (scope/ negotiate), delivery (execution/ impact), expansion (sales)
  5. Tech Support/ Troubleshooting - problem solve on BIG issues
  6. IP Creation - working with Computomic’s product dev team
  7. Thought Leadership - author Blogs, White Papers
  8. Marketing - attend industry forum & events


Are you passionate about this opportunity, but speculating that you don’t meet 100% of the experience we’re looking for? We still want to hear from you!


Apply online and let us know why you would make a great addition to the Computomic team.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.