Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Software Engineer - United Kingdom

DataVisor
8 months ago
Applications closed

Related Jobs

View all jobs

Software Engineer - Graph Data Science

Data Engineer - DV

Senior Software Engineer - Data Engineering Team

Principle Data Engineer in Nottingham - Commify

Senior Data Engineer - Scala/Spark

Senior Data Engineer / Trading Software Engineer, Autobidder

DataVisor is the world’s leading AI-powered Fraud and Risk Platform that delivers the best overall detection coverage in the industry. With an open SaaS platform that supports easy consolidation and enrichment of any data, DataVisor's solution scales infinitely and enables organizations to act on fast-evolving fraud and money laundering activities in real time. Its patented unsupervised machine learning technology, advanced device intelligence, powerful decision engine and investigation tools work together to provide guaranteed performance lift from day one. DataVisor's platform is architected to support multiple use cases across different business units flexibly, dramatically lowering the total cost of ownership, compared to legacy point solutions. DataVisor is recognized as an industry leader and has been adopted by many Fortune 500 companies across the globe.

Our award-winning software platform is powered by a team of world-class experts in big data, machine learning, security, and scalable infrastructure. Our culture is open, positive, collaborative, and results driven. Come join us!

Summary:

As platform engineers, we are building a next-generation machine learning platform, which incorporates our secret sauce, UML (unsupervised machine learning) with other SML (supervised machine learning) algorithms. Our team works to improve our core detection algorithms and automate the full training process.

As complex fraud attacks become more prevalent, it is more important than ever to detect fraudsters in real-time. The platform team is responsible for developing the architecture that makes real-time UML possible. We are looking for creative and eager engineers to help us expand our novel streaming and database systems, which enable our detection capabilities.

We continue to push the boundary of what's possible in fraud detection and data processing at scale. Join us to help usher in more innovative solutions to the fraud detection space.

What you'll do:

  • Design and build machine learning systems that process data sets from the world’s largest consumer services
  • Use unsupervised machine learning, supervised machine learning, and deep learning to detect fraudulent behavior and catch fraudsters
  • Build and optimize systems, tools, and validation strategies to support new features
  • Help design/build distributed real-time systems and features
  • Use big data technologies (e.g. Spark, Hadoop, HBase, Cassandra) to build large scale machine learning pipelines
  • Develop new systems on top of real-time streaming technologies (e.g. Kafka, Flink)

Requirements

  • 0-3years software development experience
  • 2 years experience in Java, Shell, Python development
  • Excellent knowledge of Relational Databases, SQL and ORM technologies (JPA2, Hibernate) is a plus
  • Experience in Cassandra, HBase, Flink, Spark or Kafka is a plus.
  • Experience in the Spring Framework is a plus
  • Experience with test-driven development is a plus

Benefits

We offer a flexible schedule with competitive pay, equity participation and health benefits, along with catered lunch, company off-sites, and game nights, as well as the opportunity to work with a world class team.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.