Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Software Engineer, Machine Learning Platform

Wayve
London
10 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Software Engineer, Machine Learning

Senior Software Engineer, Machine Learning

Senior Software Engineer, Machine Learning Services (MLS)

Software Engineer - (Machine Learning Experience a plus) - hybrid

Software Engineer II, Applied Machine Learning

At Wayve we're committed to creating a diverse, fair and respectful culture that is inclusive of everyone based on their unique skills and perspectives, and regardless of sex, race, religion or belief, ethnic or national origin, disability, age, citizenship, marital, domestic or civil partnership status, sexual orientation, gender identity, veteran status, pregnancy or related condition (including breastfeeding) or any other basis as protected by applicable law.

About us

Founded in 2017, Wayve is the leading developer of Embodied AI technology. Our advanced AI software and foundation models enable vehicles to perceive, understand, and navigate any complex environment, enhancing the usability and safety of automated driving systems.

Our vision is to create autonomy that propels the world forward. Our intelligent, mapless, and hardware-agnostic AI products are designed for automakers, accelerating the transition from assisted to automated driving.

At Wayve, big problems ignite us—we embrace uncertainty, leaning into complex challenges to unlock groundbreaking solutions. We aim high and stay humble in our pursuit of excellence, constantly learning and evolving as we pave the way for a smarter, safer future.

At Wayve, your contributions matter. We value diversity, embrace new perspectives, and foster an inclusive work environment; we back each other to deliver impact.

Make Wayve the experience that defines your career!

The role 

We are looking for a Software Engineer to help build the Wayve Machine Learning platform. The ML Platform team owns the machine learning training infrastructure and works with users to ensure that this infrastructure is reliable and efficiently utilised.

Key responsibilities:

You will be part of a growing group focussed on making training infrastructure available to users, for distributed training of large models. You will be working across functions with machine learning research engineers to optimise models so that they can be trained efficiently, saving both money and researcher time. You will have opportunities to develop new skills, especially in model optimisation.

Examples Projects:

Working with machine learning researchers to optimise ML models, using the latest tooling like NVIDIA NSight. Training job scheduling and orchestration e.g. tooling to schedule long running jobs at off-peak times. Tooling which provides thousands of GPUs simultaneously to our driving simulator, which we use to test the driving performance of our models off road.

About you

In order to set you up for success in this role at Wayve, we’re looking for the following skills and experience.

Essential

Minimum of 5 years experience within Software Engineering, ideally ML Infrastructure / Platform Engineering Proficiency in Python Knowledge of software engineering practices - what makes code reusable and extensible. Experience working with concurrent, parallel and distributed computing. Passion for infrastructure: building internal tooling and frameworks. Experience with cloud infrastructure, preferably Azure Experience with Docker, Kubernetes and Terraform 

Desirable

Experience profiling and optimising ML models e.g. with NVIDIA NSight. Experience working with at least one ML framework e.g. Pytorch, Tensorflow, ONNX and TensorRT

#LI-HH1

We understand that everyone has a unique set of skills and experiences and that not everyone will meet all of the requirements listed above. If you’re passionate about self-driving cars and think you have what it takes to make a positive impact on the world, we encourage you to apply.

For more information visit Careers at Wayve. 

To learn more about what drives us, visit Values at Wayve 

DISCLAIMER: We will not ask about marriage or pregnancy, care responsibilities or disabilities in any of our job adverts or interviews. However, we do look to capture information about care responsibilities, and disabilities among other diversity information as part of an optional DEI Monitoring form to help us identify areas of improvement in our hiring process and ensure that the process is inclusive and non-discriminatory.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.