Software Engineer, Machine Learning Platform

Wayve
London
1 month ago
Applications closed

Related Jobs

View all jobs

Customer Support Engineer

Staff Software Engineer - Machine Learning

Senior Machine Learning Software Engineer, Cambridgeshire

Software Development Engineer , AWS Payments

Senior Software Engineer (AI)

Python Software Engineer

At Wayve we're committed to creating a diverse, fair and respectful culture that is inclusive of everyone based on their unique skills and perspectives, and regardless of sex, race, religion or belief, ethnic or national origin, disability, age, citizenship, marital, domestic or civil partnership status, sexual orientation, gender identity, veteran status, pregnancy or related condition (including breastfeeding) or any other basis as protected by applicable law.

About us

Founded in 2017, Wayve is the leading developer of Embodied AI technology. Our advanced AI software and foundation models enable vehicles to perceive, understand, and navigate any complex environment, enhancing the usability and safety of automated driving systems.

Our vision is to create autonomy that propels the world forward. Our intelligent, mapless, and hardware-agnostic AI products are designed for automakers, accelerating the transition from assisted to automated driving.

At Wayve, big problems ignite us—we embrace uncertainty, leaning into complex challenges to unlock groundbreaking solutions. We aim high and stay humble in our pursuit of excellence, constantly learning and evolving as we pave the way for a smarter, safer future.

At Wayve, your contributions matter. We value diversity, embrace new perspectives, and foster an inclusive work environment; we back each other to deliver impact.

Make Wayve the experience that defines your career!

The role 

We are looking for a Software Engineer to help build the Wayve Machine Learning platform. The ML Platform team owns the machine learning training infrastructure and works with users to ensure that this infrastructure is reliable and efficiently utilised.

Key responsibilities:

You will be part of a growing group focussed on making training infrastructure available to users, for distributed training of large models. You will be working across functions with machine learning research engineers to optimise models so that they can be trained efficiently, saving both money and researcher time. You will have opportunities to develop new skills, especially in model optimisation.

Examples Projects:

Working with machine learning researchers to optimise ML models, using the latest tooling like NVIDIA NSight. Training job scheduling and orchestration e.g. tooling to schedule long running jobs at off-peak times. Tooling which provides thousands of GPUs simultaneously to our driving simulator, which we use to test the driving performance of our models off road.

About you

In order to set you up for success in this role at Wayve, we’re looking for the following skills and experience.

Essential

Minimum of 5 years experience within Software Engineering, ideally ML Infrastructure / Platform Engineering Proficiency in Python Knowledge of software engineering practices - what makes code reusable and extensible. Experience working with concurrent, parallel and distributed computing. Passion for infrastructure: building internal tooling and frameworks. Experience with cloud infrastructure, preferably Azure Experience with Docker, Kubernetes and Terraform 

Desirable

Experience profiling and optimising ML models e.g. with NVIDIA NSight. Experience working with at least one ML framework e.g. Pytorch, Tensorflow, ONNX and TensorRT

#LI-HH1

We understand that everyone has a unique set of skills and experiences and that not everyone will meet all of the requirements listed above. If you’re passionate about self-driving cars and think you have what it takes to make a positive impact on the world, we encourage you to apply.

For more information visit Careers at Wayve. 

To learn more about what drives us, visit Values at Wayve 

DISCLAIMER: We will not ask about marriage or pregnancy, care responsibilities or disabilities in any of our job adverts or interviews. However, we do look to capture information about care responsibilities, and disabilities among other diversity information as part of an optional DEI Monitoring form to help us identify areas of improvement in our hiring process and ensure that the process is inclusive and non-discriminatory.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Books to Advance Your Machine Learning Career in the UK

Machine learning (ML) remains one of the fastest-growing fields within technology, reshaping industries across the UK from finance and healthcare to e-commerce, telecommunications, and beyond. With increasing demand for ML specialists, job seekers who continually update their knowledge and skills hold a significant advantage. In this article, we've curated ten essential books every machine learning professional or aspiring ML engineer in the UK should read. Covering foundational theory, practical implementations, advanced techniques, and industry trends, these resources will equip you to excel in your machine learning career.

Navigating Machine Learning Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Machine learning (ML) has swiftly become one of the most in-demand skill areas across industries, with companies leveraging predictive models and data-driven insights to solve challenges in healthcare, finance, retail, manufacturing, and beyond. Whether you’re an early-career data scientist aiming to break into ML, a seasoned engineer branching into deep learning, or a product manager exploring AI-driven solutions, machine learning career fairs offer a powerful route to connect with prospective employers face-to-face. Attending these events can help you: Network with hiring managers and technical leads who make direct recruitment decisions. Gain insider insights on the latest ML trends and tools. Learn about emerging job roles and new industry verticals adopting machine learning. Showcase your interpersonal and communication skills, both of which are increasingly important in collaborative AI/ML environments. However, with many applicants vying for attention in a bustling hall, standing out isn’t always easy. In this detailed guide, we’ll walk you through how to prepare meticulously, pitch yourself confidently, ask relevant questions, and follow up effectively to land the machine learning opportunity that aligns with your ambitions.

Common Pitfalls Machine Learning Job Seekers Face and How to Avoid Them

Machine learning has emerged as one of the most sought-after fields in technology, with companies across industries—from retail and healthcare to finance and manufacturing—embracing data-driven solutions at an unprecedented pace. In the UK, the demand for skilled ML professionals continues to soar, and opportunities in this domain are abundant. Yet, amid this growing market, competition for machine learning jobs can be fierce. Prospective employers set a high bar: they seek candidates with not just theoretical understanding, but also strong practical skills, business sense, and an aptitude for effective communication. Whether you’re a recent graduate, a data scientist transitioning into machine learning, or a seasoned developer pivoting your career, it’s essential to avoid common mistakes that may hinder your prospects. This blog post explores the pitfalls frequently encountered by machine learning job seekers, and offers actionable guidance on how to steer clear of them. If you’re looking for roles in this thriving sector, don’t forget to check out Machine Learning Jobs for the latest vacancies across the UK. In this article, we’ll break down these pitfalls to help you refine your approach in applications, interviews, and career development. By taking on board these insights, you can significantly enhance your employability, stand out from the competition, and secure a rewarding position in the world of machine learning.