Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Software Engineer

Annapurna
Leeds
10 months ago
Applications closed

Related Jobs

View all jobs

Software Engineer III - MLOps

Software Engineer - (Machine Learning Engineer) - Hybrid

Lead Software Engineer - MLOps

Machine Learning Research Engineer, 3D

Management Consultant - Data Science in London - Capgemini Invent

Senior Backend Software Engineer (Python) in London - NLPatent

Software Engineer(Cloud Services)


Job Type:Permanent Position


Location:Hybrid (UK Based)


Start Date:ASAP



About The Company:


We are a leading developer of embodied intelligence for autonomous vehicles. We use AI to pioneer a next-generation approach to self-driving: AV2.0, which enables fleet operators to unlock the benefits of AV technology at scale. We were the first to deploy AVs on public roads with end-to-end deep learning.



The role:


  • Microservices Development: Design and implement cloud-based microservices that provide map and routing services to support training, evaluation, and onboard vehicle needs.
  • API Consistency: Collaborate with the embedded software team to develop consistent APIs for both embedded and cloud services, ensuring a unified approach across the company's systems.
  • Cloud Deployment: Create and deploy microservices to a Kubernetes-based cloud environment hosted in Azure, optimizing for reliability, scalability, and performance.
  • Cross-functional Collaboration: Work with various teams, including Embodied AI, Evaluation & Validation, and Onboard Software, to gather requirements and ensure that services meet the diverse needs of internal stakeholders.
  • Mapping and GIS Technologies: Apply mapping and Geographic Information System (GIS) technologies to enhance the quality and functionality of the routing services.


About you:


  • Microservices and Cloud Expertise: At least 3 years of experience in building and deploying cloud-based microservices, particularly in a Kubernetes environment.
  • Kubernetes and Azure: Proficiency in working with Kubernetes and deploying services to Azure, including managing CI/CD pipelines and optimizing deployments for performance.
  • Programming Skills: Strong programming skills in languages such as Python, C++, or Rust, with a focus on creating efficient, scalable, and maintainable code. This role will require you to work across multiple programming languages.
  • API Design and Integration: Experience designing RESTful APIs and ensuring consistency across distributed systems, ideally involving both cloud and embedded use cases.
  • Mapping and GIS Technologies: Experience with mapping technologies or Geographic Information Systems (GIS) is a significant plus.
  • Embedded Systems Experience: Exposure to IoT or embedded environments is a plus, as it will aid in collaborating effectively with the embedded side of the team.



If you would like to have a chat about this exciting opportunity, apply below or reach out directly to

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.