Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Software Development Engineer / Engineering Software

Property Finder
London
8 months ago
Applications closed

Related Jobs

View all jobs

Software Engineer III Data Engineering

Data Engineer II - Decision Analytics

Technical Data Engineer

Data Engineer, Prime Video Core Analytics and Tooling

Senior Lead Software Engineer - CDAO Metadata Engineering

Data Engineer II - Databricks and Python

Relocation would be required but with highly competitive, tax free salary package.A UAE-born startup, Property Finder expanded its operations to Qatar, Bahrain, Saudi Arabia, Egypt and Turkey over the yearsThe company is one of the largest technology start-ups in the region and a recent Unicorn.

As the VP, Engineering for Enterprise B2B Services, you will head the strategic development and execution of Property Finder’s client-facing applications and enterprise catalog services.Your responsibilities include overseeing engineering managers and technical leads to deliver high-quality software adhering to modern architectural standards.Champion collaboration across product management, design, and engineering teams to develop market-leading enterprise services and data products.Propel the integration of AI technologies within product and engineering teams to foster innovation and enhance product offerings.Mentor and guide engineering managers and technical leaders, enhancing team productivity, engagement, and performance.Direct initiatives for the modernization of legacy systems and accelerate the delivery of new product capabilities within B2B services and data solutions.Oversee critical domains such as Enterprise Catalog Services, Client-Facing B2B Applications, Agent Experience, and Agent Onboarding Platforms, to ensure optimal performance and user satisfaction.Manage the deployment of web applications across more than five countries in the MENA region, customizing solutions to meet diverse local compliance and business needs.Implement stringent engineering processes and governance throughout the product development lifecycle to guarantee the delivery of high-quality releases.Define project timelines and oversee execution strategies in close collaboration with product management.Cultivate an environment that attracts, develops, and retains elite engineering talent while promoting an inclusive workplace culture that encourages innovation and professional growth.Promote a culture of quality, speed, and excellence in operational practices within the engineering teams, leveraging metrics for continuous improvement.Minimum of 15 years in engineering leadership, managing expansive, geographically dispersed software engineering teams.Demonstrated success in architecting and scaling exceptional engineering organizations.Deep understanding of contemporary software engineering practices, architectural norms, and team dynamics.Strong background in data products and AI technology landscapes.Comprehensive experience overseeing the entire software development lifecycle of SaaS products.

Proficiency in data-driven product development.Knowledge in machine learning and cutting-edge technologies.Well-versed in agile software development methodologies.In-depth understanding of security, privacy, and compliance within SaaS ecosystems.Go, PHP, Python, Swift UI, Kotlin, React, AWS, and Kubernetes.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.