Software Development Engineer , AWS Payments

Amazon
London
2 days ago
Create job alert

Software Development Engineer, AWS Payments

Machine learning, big data; real-time data streaming. If these areas resonate with you, then join us to work on extremely motivating challenges at Amazon Web Services (AWS). Within AWS Payments we build and run Machine Learning models to optimize business processes and improve the customer experience.

If you are a strong software engineer, self-starter and learner who is passionate about working with massive amounts of data to build state-of-art systems on top of AWS native services, then this is the right opportunity for you. You will work with a team of highly skilled engineers and scientists to build the next generation Machine Learning, Data, and Analytics platform at AWS. As part of your job, you will deal with large amounts of training data, rapid prototyping of new models, performance optimizations, offline and online testing, and building fully automated solutions to push Machine Learning models to production, applying MLOps best practices.

As a software development engineer of this team, you will play a pivotal role in shaping the definition, vision, design, roadmap and development of this set of product features from beginning to end. You will:

  1. Mentor and lead junior developers on the team.
  2. Help drive business decisions with your technical input.
  3. Design, implement, test, deploy and maintain innovative software solutions, while optimizing service performance, durability, cost, and security.
  4. Use software engineering best practices to ensure a high standard of quality for all of the team deliverables.
  5. Participate in the full development cycle for ETL: design, implementation, validation, documentation, and maintenance.
  6. Design, implement, and support data warehouse / data lake infrastructure using AWS big data stack, Python, Redshift, Glue/lake formation, EMR/Spark/Scala, Athena etc.
  7. Write high quality distributed and scalable systems, to deal with large scale data.
  8. Automate the end-to-end development life-cycle to deploy Machine Learning models from research phase to production.
  9. Work in an agile, startup-like development environment, where you are always working on the most important stuff.
  10. Work closely with scientists, data engineers and other stakeholders to create and deploy new features, in order to optimize various business processes.


In this role you will contribute to a critical and highly-visible function within the AWS business. You will be given the opportunity to autonomously deliver the technical direction of new projects and features in our roadmap. If you’re excited to have a large impact on AWS and the cloud computing industry, you’ll find this role to be engaging, challenging, and full of opportunities to learn and grow.

BASIC QUALIFICATIONS

- 3+ years of non-internship professional software development experience
- 2+ years of non-internship design or architecture (design patterns, reliability and scaling) of new and existing systems experience
- Experience programming with at least one software programming language

PREFERRED QUALIFICATIONS

- 3+ years of full software development life cycle, including coding standards, code reviews, source control management, build processes, testing, and operations experience
- Bachelor's degree in computer science or equivalent
- Experience building and optimizing ‘big data’ pipelines, architectures and data sets
- Experience using big data technologies (Hive, Hbase, Spark, EMR, etc.)
- Advanced working SQL knowledge and experience working with relational databases

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, disability, age, or other legally protected status.

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.

The base salary for this position ranges from $114,800/year up to $191,800/year. Salary is based on a number of factors and may vary depending on job-related knowledge, skills, and experience. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. Applicants should apply via our internal or external career site.

#J-18808-Ljbffr

Related Jobs

View all jobs

Python Developer

Software Engineer (Python React)

Principal Software Engineer

Senior Backend Software Developer

Intermediate Data Engineer

Senior Software Engineer (Frontend)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Books to Advance Your Machine Learning Career in the UK

Machine learning (ML) remains one of the fastest-growing fields within technology, reshaping industries across the UK from finance and healthcare to e-commerce, telecommunications, and beyond. With increasing demand for ML specialists, job seekers who continually update their knowledge and skills hold a significant advantage. In this article, we've curated ten essential books every machine learning professional or aspiring ML engineer in the UK should read. Covering foundational theory, practical implementations, advanced techniques, and industry trends, these resources will equip you to excel in your machine learning career.

Navigating Machine Learning Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Machine learning (ML) has swiftly become one of the most in-demand skill areas across industries, with companies leveraging predictive models and data-driven insights to solve challenges in healthcare, finance, retail, manufacturing, and beyond. Whether you’re an early-career data scientist aiming to break into ML, a seasoned engineer branching into deep learning, or a product manager exploring AI-driven solutions, machine learning career fairs offer a powerful route to connect with prospective employers face-to-face. Attending these events can help you: Network with hiring managers and technical leads who make direct recruitment decisions. Gain insider insights on the latest ML trends and tools. Learn about emerging job roles and new industry verticals adopting machine learning. Showcase your interpersonal and communication skills, both of which are increasingly important in collaborative AI/ML environments. However, with many applicants vying for attention in a bustling hall, standing out isn’t always easy. In this detailed guide, we’ll walk you through how to prepare meticulously, pitch yourself confidently, ask relevant questions, and follow up effectively to land the machine learning opportunity that aligns with your ambitions.

Common Pitfalls Machine Learning Job Seekers Face and How to Avoid Them

Machine learning has emerged as one of the most sought-after fields in technology, with companies across industries—from retail and healthcare to finance and manufacturing—embracing data-driven solutions at an unprecedented pace. In the UK, the demand for skilled ML professionals continues to soar, and opportunities in this domain are abundant. Yet, amid this growing market, competition for machine learning jobs can be fierce. Prospective employers set a high bar: they seek candidates with not just theoretical understanding, but also strong practical skills, business sense, and an aptitude for effective communication. Whether you’re a recent graduate, a data scientist transitioning into machine learning, or a seasoned developer pivoting your career, it’s essential to avoid common mistakes that may hinder your prospects. This blog post explores the pitfalls frequently encountered by machine learning job seekers, and offers actionable guidance on how to steer clear of them. If you’re looking for roles in this thriving sector, don’t forget to check out Machine Learning Jobs for the latest vacancies across the UK. In this article, we’ll break down these pitfalls to help you refine your approach in applications, interviews, and career development. By taking on board these insights, you can significantly enhance your employability, stand out from the competition, and secure a rewarding position in the world of machine learning.