Snr ML Engineer – Machine Learning, LLMs, MLOps, RAG, Prompt Engineering, UK Remote

WMtech
Birmingham
1 week ago
Applications closed

Related Jobs

View all jobs

Snr ML Engineer – Machine Learning, LLMs, MLOps, RAG, Prompt Engineering, UK Remote


My client is revolutionizing the way businesses are leveraging AI with cutting edge Machine Learning technologies. Recently funded and looking for Snr ML Engineers to join the mission to innovate and make an impact.


What You'll Do


As a Senior Machine Learning Engineer, you will:


  • Design, build, and deploy scalable machine learning models and systems.
  • Work extensively with Large Language Models (LLMs) to develop innovative AI-driven applications.
  • Implement and optimize Retrieval-Augmented Generation (RAG) architectures to enhance model performance.
  • Lead MLOps initiatives to streamline the development, deployment, and monitoring of ML workflows.
  • Apply Prompt Engineering techniques to fine-tune LLM outputs and improve usability.
  • Collaborate with cross-functional teams to integrate AI solutions into real-world applications.
  • Leverage Google Cloud Platform (GCP) to build and deploy cloud-native ML solutions.
  • Utilize Python and key ML libraries (Pandas, PyTorch, Numpy, etc.) for model development.


What We're Looking For


  • 5+ years of experience in machine learning, with a strong focus on building production-grade models.
  • Expertise in LLMs, including engineering, fine tuning, model evaluation, deployment, and real-world applications.
  • Hands-on experience with MLOps tools and pipelines (e.g., MLflow, Kubeflow, or similar).
  • Solid programming skills in Python, with experience in ML libraries such as Numpy, PyTorch, or Pandas.
  • Knowledge of Retrieval-Augmented Generation (RAG) techniques, embeddings, knowledge graphs
  • Strong experience working with Google Cloud Platform (GCP) for ML workflows.
  • Data Science/ Computational Linguistics: Building evaluation frameworks and datasets, model iteration, gap analysis.


To apply please send your CV to


WMTech

WMTech is trusted by leaders in the Cyber Security, AI and Enterprise Software sectors to advise on talent strategy specifically for Start-Ups. Our clients are heavily VC backed, unicorn status, pre-IPO start-ups with pioneering technology.


WMTech is an equal opportunity employer and does not discriminate in employment on the basis of race, color, religion, sex (including pregnancy and gender identity), national origin, political affiliation, sexual orientation, marital status, disability, genetic information, age, membership in an employee organization, retaliation, parental status, military service, or other non-merit factor.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.