Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Snr ML Engineer – Machine Learning, LLMs, MLOps, RAG, Prompt Engineering, UK Remote

WMtech
Bury
5 months ago
Applications closed

Related Jobs

View all jobs

Snr Data Analyst

Snr ML Engineer – Machine Learning, LLMs, MLOps, RAG, Prompt Engineering, UK Remote


My client is revolutionizing the way businesses are leveraging AI with cutting edge Machine Learning technologies. Recently funded and looking for Snr ML Engineers to join the mission to innovate and make an impact.


What You'll Do


As a Senior Machine Learning Engineer, you will:


  • Design, build, and deploy scalable machine learning models and systems.
  • Work extensively with Large Language Models (LLMs) to develop innovative AI-driven applications.
  • Implement and optimize Retrieval-Augmented Generation (RAG) architectures to enhance model performance.
  • Lead MLOps initiatives to streamline the development, deployment, and monitoring of ML workflows.
  • Apply Prompt Engineering techniques to fine-tune LLM outputs and improve usability.
  • Collaborate with cross-functional teams to integrate AI solutions into real-world applications.
  • Leverage Google Cloud Platform (GCP) to build and deploy cloud-native ML solutions.
  • Utilize Python and key ML libraries (Pandas, PyTorch, Numpy, etc.) for model development.


What We're Looking For


  • 5+ years of experience in machine learning, with a strong focus on building production-grade models.
  • Expertise in LLMs, including engineering, fine tuning, model evaluation, deployment, and real-world applications.
  • Hands-on experience with MLOps tools and pipelines (e.g., MLflow, Kubeflow, or similar).
  • Solid programming skills in Python, with experience in ML libraries such as Numpy, PyTorch, or Pandas.
  • Knowledge of Retrieval-Augmented Generation (RAG) techniques, embeddings, knowledge graphs
  • Strong experience working with Google Cloud Platform (GCP) for ML workflows.
  • Data Science/ Computational Linguistics: Building evaluation frameworks and datasets, model iteration, gap analysis.


To apply please send your CV to


WMTech

WMTech is trusted by leaders in the Cyber Security, AI and Enterprise Software sectors to advise on talent strategy specifically for Start-Ups. Our clients are heavily VC backed, unicorn status, pre-IPO start-ups with pioneering technology.


WMTech is an equal opportunity employer and does not discriminate in employment on the basis of race, color, religion, sex (including pregnancy and gender identity), national origin, political affiliation, sexual orientation, marital status, disability, genetic information, age, membership in an employee organization, retaliation, parental status, military service, or other non-merit factor.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.