Senior/Principal/Lead Data Scientist

Harnham
London
9 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer (Databricks)

Defence AI Lead: Senior Data Scientist & ML Researcher

Senior Data Scientist SME & AI Architect

Senior Data Scientist SME & AI Architect

Senior Data Scientist SME & AI Architect

Senior Data Scientist SME & AI Architect

Job Description

Senior / Principal / Lead Data Scientist

London - Hybrid (3 days a week)

£70,000 to £120,000 + benefits


Please note: This role covers candidates benchmarked separately at either the Senior, Principal or Lead level. Feel free to apply if you fall between these three levels.


This is a great opportunity to join a globally established marketing consultancy - in an 80% hands-on, 20% technicalleadership/managementrole (Principal and Lead ONLY).


THE ROLE

In this position you will:

  • Drive machine learning projects across recommenders, segmentation, forecasting and optimising marketing spend
  • Work on advanced projects across GenAI and NLP
  • Work closely with an Engineering team, whilst remaining full stack in your projects
  • Report into Head of Data Science
  • Driving commercial value closely with senior stakeholders
  • Have a chance to upskill and mentor/manage, within a strong team of 8


Skills And Experience

  • Strong DataScience/Statisticalfundamental knowledge is required
  • Experience across some of recommenders, forecasting, pricing, churn, marketing etc. - this is a role for a generalist!
  • Exposure to some of GenAI, NLP, Computer Vision is a bonus
  • MSc in a ST...

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.