Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior VC Research Analyst

Arcanis
8 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Senior Snowflake Data Engineer

Senior Data Scientist

Senior Data Analyst

Senior Data Scientist

Senior Data Engineer - 12 month FTC

About Arcanis:

Arcanis is a research and investment firm focused on deep state-of-the-art data collection and complete insight research automation for Growth and Late-Stage VC.

We replace intuition and gut feeling with provable science through VC full-cycle investment process powered by our proprietary tools and our up-to-date database of Growth and Late Stage companies:

  • Deep Research:a standardized, scalable methodology for VC company research, utilizing state-of-the-art automation from the initial deal draft to expert-level insights ready for Investment Committee review portfolios/strategies for Asset Managers, large LPs, and small and medium VC funds with actionable improvement
  • Systematic Strategies:development of GLS VC strategies with long-term advisory support, offered in a white-label or revenue-sharing model
  • Benchmarking and Monitoring: real-time, actionable performance evaluations and risk assessments, enabling asset managers, LPs, and VC funds to track and optimize their portfolios effectively.

As a relatively young company with a technology-first approach, we've already achieved strong results based on feedback from both current and prospective clients. Although our initial clients are primarily based in Geneva and occupy much of our current capacity, we have a clear automation roadmap that will enable us to scale globally once our solution is stabilized.


Position Overview:

TheSenior Analystat Arcanis plays a crucial role in connecting data experiments, developing new methodologies, automating them with the IT team, and standardizing research processes. Additionally, the Senior Analyst will build the research team’s capacity to meet growing demand.

We are looking for a mature, systematic thinker who is fast on their feet, creative yet grounded in common sense, and with a good sense of humor.A strong background in mathematicsis essential to avoid feeling overwhelmed by complex analytical concepts like Fourier functions or statistical modeling.

The ideal candidate will be able to assemble complex yet robust analytics mechanisms from simple, understandable components. Experience with data and software engineering is necessary to grasp key concepts required for enterprise-level solutions.

A solid understanding of venture capital markets is highly preferred, and experience with enterprise-level LLMs is also required. The role involves leading and organizing the research team, directly reporting to the managing partner, and regularly interacting with internal stakeholders.


Qualifications:

  • 5+ years of experience infinancial analysiswithin later-stage venture capital or private equity.
  • Bachelor’s degree or higher inMathematics, Cybernetics, Data Science, or a related field.
  • Strong leadership and team management skills, with a proven ability to foster collaborative, high-performing teams.
  • Proficiency in data analysis tools (Excel, Python, SQL); experience with AI-driven research methodologies is a significant plus.
  • Deep understanding of venture capital research and decision-making processes.
  • Excellent communication skills, both written and verbal, with the ability to present complex data and insights.
  • Fluency in English is required.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.