National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior VC Research Analyst

Arcanis
Birmingham
5 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist - Payments

Machine Learning Engineer

Senior Analyst Consultant

Senior Software Developer

Senior Python Developer

About Arcanis:

Arcanis is a research and investment firm focused on deep state-of-the-art data collection and complete insight research automation for Growth and Late-Stage VC.

We replace intuition and gut feeling with provable science through VC full-cycle investment process powered by our proprietary tools and our up-to-date database of Growth and Late Stage companies:

  • Deep Research:a standardized, scalable methodology for VC company research, utilizing state-of-the-art automation from the initial deal draft to expert-level insights ready for Investment Committee review portfolios/strategies for Asset Managers, large LPs, and small and medium VC funds with actionable improvement
  • Systematic Strategies:development of GLS VC strategies with long-term advisory support, offered in a white-label or revenue-sharing model
  • Benchmarking and Monitoring: real-time, actionable performance evaluations and risk assessments, enabling asset managers, LPs, and VC funds to track and optimize their portfolios effectively.

As a relatively young company with a technology-first approach, we've already achieved strong results based on feedback from both current and prospective clients. Although our initial clients are primarily based in Geneva and occupy much of our current capacity, we have a clear automation roadmap that will enable us to scale globally once our solution is stabilized.


Position Overview:

TheSenior Analystat Arcanis plays a crucial role in connecting data experiments, developing new methodologies, automating them with the IT team, and standardizing research processes. Additionally, the Senior Analyst will build the research team’s capacity to meet growing demand.

We are looking for a mature, systematic thinker who is fast on their feet, creative yet grounded in common sense, and with a good sense of humor.A strong background in mathematicsis essential to avoid feeling overwhelmed by complex analytical concepts like Fourier functions or statistical modeling.

The ideal candidate will be able to assemble complex yet robust analytics mechanisms from simple, understandable components. Experience with data and software engineering is necessary to grasp key concepts required for enterprise-level solutions.

A solid understanding of venture capital markets is highly preferred, and experience with enterprise-level LLMs is also required. The role involves leading and organizing the research team, directly reporting to the managing partner, and regularly interacting with internal stakeholders.


Qualifications:

  • 5+ years of experience infinancial analysiswithin later-stage venture capital or private equity.
  • Bachelor’s degree or higher inMathematics, Cybernetics, Data Science, or a related field.
  • Strong leadership and team management skills, with a proven ability to foster collaborative, high-performing teams.
  • Proficiency in data analysis tools (Excel, Python, SQL); experience with AI-driven research methodologies is a significant plus.
  • Deep understanding of venture capital research and decision-making processes.
  • Excellent communication skills, both written and verbal, with the ability to present complex data and insights.
  • Fluency in English is required.
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.