National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior VC Research Analyst

Arcanis
Leeds
5 months ago
Applications closed

Related Jobs

View all jobs

SEO & Data Analyst

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

About Arcanis:

Arcanis is a research and investment firm focused on deep state-of-the-art data collection and complete insight research automation for Growth and Late-Stage VC.

We replace intuition and gut feeling with provable science through VC full-cycle investment process powered by our proprietary tools and our up-to-date database of Growth and Late Stage companies:

  • Deep Research:a standardized, scalable methodology for VC company research, utilizing state-of-the-art automation from the initial deal draft to expert-level insights ready for Investment Committee review portfolios/strategies for Asset Managers, large LPs, and small and medium VC funds with actionable improvement
  • Systematic Strategies:development of GLS VC strategies with long-term advisory support, offered in a white-label or revenue-sharing model
  • Benchmarking and Monitoring: real-time, actionable performance evaluations and risk assessments, enabling asset managers, LPs, and VC funds to track and optimize their portfolios effectively.

As a relatively young company with a technology-first approach, we've already achieved strong results based on feedback from both current and prospective clients. Although our initial clients are primarily based in Geneva and occupy much of our current capacity, we have a clear automation roadmap that will enable us to scale globally once our solution is stabilized.


Position Overview:

TheSenior Analystat Arcanis plays a crucial role in connecting data experiments, developing new methodologies, automating them with the IT team, and standardizing research processes. Additionally, the Senior Analyst will build the research team’s capacity to meet growing demand.

We are looking for a mature, systematic thinker who is fast on their feet, creative yet grounded in common sense, and with a good sense of humor.A strong background in mathematicsis essential to avoid feeling overwhelmed by complex analytical concepts like Fourier functions or statistical modeling.

The ideal candidate will be able to assemble complex yet robust analytics mechanisms from simple, understandable components. Experience with data and software engineering is necessary to grasp key concepts required for enterprise-level solutions.

A solid understanding of venture capital markets is highly preferred, and experience with enterprise-level LLMs is also required. The role involves leading and organizing the research team, directly reporting to the managing partner, and regularly interacting with internal stakeholders.


Qualifications:

  • 5+ years of experience infinancial analysiswithin later-stage venture capital or private equity.
  • Bachelor’s degree or higher inMathematics, Cybernetics, Data Science, or a related field.
  • Strong leadership and team management skills, with a proven ability to foster collaborative, high-performing teams.
  • Proficiency in data analysis tools (Excel, Python, SQL); experience with AI-driven research methodologies is a significant plus.
  • Deep understanding of venture capital research and decision-making processes.
  • Excellent communication skills, both written and verbal, with the ability to present complex data and insights.
  • Fluency in English is required.
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.