Senior Software Engineer Technical Lead

Chatham
3 weeks ago
Create job alert

Senior Software Engineer Technical Lead

Eligible To Provide Sponsorship

A leading Bank is hiring a Senior Software Engineer / Technical Lead to drive the development and design of several greenfield retail banking platforms as our client rebuilds its brand to stay ahead of the competition. We are looking for a Senior Software Engineer Technical Lead with a background in Java, Kafka, and Azure who can provide technical leadership and contribute to the vision and strategy as our client continues through its modernisation campaign. Our client is paying a basic salary of £100,000 + 25% bonus + benefits to be based in Wolverhampton on a hybrid basis.

Your responsibilities will include:

Lead the development and implementation of a modern cloud foundation and data platform that is robust, scalable, fully automated, secure, and can support the growth of the business.
Build Scalable Architectures: Leverage modern technologies to design and implement scalable, secure, and high-performing cloud-native solutions.
Data Engineering and Analytics: Work closely with data teams to define robust data pipelines and scalable cloud-based data platforms using tools like Apache Kafka, Snowflake, or Databricks.
Core skill set for this position:

Strong experience building and scaling baking systems (Lending, Payments, or Mortgages) with a focus on security compliance and performance is a must.
Experience leading upon architectural challenges, system scalability, and guidance of engineering teams is a must.
A background in Java, C#, Python, or React development with experience providing hands-on technical leadership is a must.
New Product Ramping (approach to ramping up new products with less-experienced teams, providing clear strategies for facilitating MVP products in market and enabling teams to perform at scale) is a must.
Digita transformation experience, moving from on-premise to modern cloud service using Azure, is a must.
Benefits: £100,000 / 25% bonus / 28 days holiday / Holiday Purchase Scheme / Hybrid / Health Insurance / 13% pension / plus much more.

Senior Software Engineer Technical Lead

Related Jobs

View all jobs

Senior Software Engineer Technical Lead

Senior Software Engineer Technical Lead

Software Engineer - Technical Leadership (ML)

Senior Software Engineer

Senior Software Engineer, Enterprise Engineering

Senior Staff Software Engineer, AI and Data Infrastructure

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.

Machine Learning Leadership for Managers: Strategies to Motivate, Mentor, and Set Realistic Goals in Data-Driven Teams

Machine learning (ML) has become an indispensable force in the modern business world, influencing everything from targeted marketing campaigns to advanced medical diagnostics. As industries integrate predictive algorithms and data-driven decision-making into their core operations, the need for effective leadership in machine learning environments has never been greater. Whether you’re overseeing a small team of data scientists or spearheading an enterprise-scale ML project, your leadership style must accommodate rapid innovation, complex problem-solving, and diverse stakeholder expectations. This guide provides actionable insights into how you can motivate, mentor, and establish achievable goals for your machine learning teams—ensuring they thrive in data-driven environments.