Senior Software Engineer Technical Lead

Farringdon
2 weeks ago
Create job alert

Senior Software Engineer Technical Lead

A leading Bank is hiring a Senior Software Engineer / Technical Lead to drive the development and design of several greenfield retail banking platforms as our client rebuilds its brand to stay ahead of the competition. We are looking for a Senior Engineer with a background in Java, Kafka, and Azure who can provide technical leadership and contribute to the vision and strategy as our client continues through its modernization campaign. Our client is paying a basic salary of £100,000 + 25% bonus + benefits to be based in London with occasional travel to Kent.

Our client is seeking experienced engineers with recent retail / digital banking experience who can design new product roadmaps, focus on architectural challenges, and provide hands-on technical leadership to a team of engineers.

Your responsibilities will include:

Lead the development and implementation of a modern cloud foundation and data platform that is robust, scalable, fully automated, secure, and can support the growth of the business.
Build Scalable Architectures: Leverage modern technologies to design and implement scalable, secure, and high-performing cloud-native solutions.
API Development and Integration: Design and build secure RESTful and GraphQL APIs, ensuring seamless integration with core banking systems (e.g., Mambu) and external services like Open Banking platforms.
Data Engineering and Analytics: Work closely with data teams to define robust data pipelines and scalable cloud-based data platforms using tools like Apache Kafka, Snowflake, or Databricks.
Monitoring and Performance Tuning: Implement advanced monitoring and observability solutions using tools like Prometheus, Grafana, or Datadog to proactively identify and resolve performance bottlenecks.
Code and System Optimisation: Proactively analyse and optimise existing systems for improved performance, scalability, and maintainability. 
Core skill set for this position:

Strong experience building and scaling baking systems (Lending, Payments, or Mortgages) with a focus on security compliance and performance is a must.
Experience leading upon architectural challenges, system scalability, and guidance of engineering teams is a must.
A background in Java, C#, Python, or React development with experience providing hands-on technical leadership is a must.
New Product Ramping (approach to ramping up new products with less-experienced teams, providing clear strategies for facilitating MVP products in market and enabling teams to perform at scale) is a must.
Digita transformation experience, moving from on-premise to modern cloud service using Azure, is a must.Benefits: £100,000 / 25% bonus / 28 days holiday / Holiday Purchase Scheme / Occasional travel / Health Insurance / 13% pension / plus much more.

Senior Software Engineer Technical Lead

Related Jobs

View all jobs

Senior Software Engineer - Python/DDD

Senior Backend Software Developer

Principal Software Engineer

Senior Go Developer

Senior Frontend Developer

C++ Senior Engineer – ML Focus

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Job-Hunting During Economic Uncertainty: Machine Learning Edition

Machine learning (ML) has firmly established itself as a crucial part of modern technology, powering everything from personalised recommendations and fraud detection to advanced robotics and predictive maintenance. Both start-ups and multinational corporations depend on machine learning engineers and data experts to gain a competitive edge via data-driven insights and automation. However, even this high-demand sector can experience a downturn when broader economic forces—such as global recessions, wavering investor confidence, or unforeseen financial events—lead to more selective hiring, stricter budgets, and lengthier recruitment cycles. For ML professionals, the result can be fewer available positions, more rivals applying for each role, or narrower project scopes. Nevertheless, the paradox is that organisations still require skilled ML practitioners to optimise operations, explore new revenue channels, and cope with fast-changing market conditions. This guide aims to help you adjust your job-hunting tactics to these challenges, so you can still secure a fulfilling position despite uncertain economic headwinds. We will cover: How market volatility influences machine learning recruitment and your subsequent steps. Effective strategies to distinguish yourself when the field becomes more discerning. Ways to showcase your technical and interpersonal skills with tangible business impact. Methods for maintaining morale and momentum throughout potentially protracted hiring processes. How www.machinelearningjobs.co.uk can direct you towards the right opportunities in machine learning. By sharpening your professional profile, aligning your abilities with in-demand areas, and engaging with a focused ML community, you can position yourself for success—even in challenging financial conditions.

How to Achieve Work-Life Balance in Machine Learning Jobs: Realistic Strategies and Mental Health Tips

Machine Learning (ML) has become a cornerstone of modern innovation, powering everything from personalised recommendation engines and chatbots to autonomous vehicles and advanced data analytics. With numerous industries integrating ML into their core operations, the demand for skilled professionals—such as ML engineers, research scientists, and data strategists—continues to surge. High salaries, cutting-edge projects, and rapid professional growth attract talent in droves, creating a vibrant yet intensely competitive sector. But the dynamism of this field can cut both ways. Along with fulfilling opportunities comes the pressure of tight deadlines, complex problem-solving, continuous learning curves, and high-stakes project deliverables. It’s a setting where many professionals ask themselves, “Is true work-life balance even possible?” When new algorithms emerge daily and stakeholder expectations soar, the line between healthy dedication and perpetual overwork can become alarmingly thin. This comprehensive guide aims to shed light on how to achieve a healthy work-life balance in Machine Learning roles. We’ll discuss the distinctive pressures ML professionals face, realistic approaches to managing workloads, strategies for safeguarding mental health, and how boundary-setting can be the difference between sustained career growth and burnout. Whether you’re just getting started or have been at the forefront of ML for years, these insights will empower you to excel without sacrificing your well-being.

Transitioning from Academia to the Machine Learning Industry: How PhDs and Researchers Can Thrive in Commercial ML Settings

Machine learning (ML) has rapidly evolved from an academic discipline into a cornerstone of commercial innovation. From personalising online content to accelerating drug discovery, machine learning technologies permeate nearly every sector, creating exciting career avenues for talented researchers. If you’re a PhD or academic scientist thinking about leaping into this dynamic field, you’re not alone. Companies are eager to recruit professionals with a strong foundation in algorithms, statistical methods, and domain-specific knowledge to build the intelligent products of tomorrow. This article explores the essential steps academics can take to transition into industry roles in machine learning. We’ll discuss the differences between academic and commercial research, the skill sets most in demand, and how to optimise your CV and interview strategy. You’ll also find tips on networking, developing a commercial mindset, and navigating common challenges as you pivot your career from the halls of academia to the ML-driven tech sector.