Senior Software Engineer

Complexio
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Software Engineer, Data Engineering

Senior Software Engineer - On Device Machine Learning

Senior Software Engineer & Data Engineer (Java/Python)

Senior Software Engineer, Cloud Native & MLOps

Senior Software Engineer – Machine Learning

Description

Complexio is Foundational AI works to automate business activities by ingesting whole company data – both structured and unstructured – and making sense of it. Using proprietary models and algorithms Complexio forms a deep understanding of how humans are interacting and using it. Automation can then replicate and improve these actions independently.

Complexio is a joint venture between Hafnia and Símbolo, in partnership with Marfin ManagementC Transport MaritimeTrans Sea Transport and BW Epic Kosan

 

About the job

As a Senior Software Engineer with broad expertise, you will be a vital part of our team, developing innovative applications that leverage AI capabilities to enhance user experiences and streamline communication. You will work alongside a talented team of Data Scientists, DevOps, Product Managers, Business Analysts experts and play a key role in designing and implementing specialised AI assistant technology.

Requirements

You have

  • Excellent problem-solving and technical skills.
  • Strong communication and collaboration skills, with the ability to work in a team.
  • Interest and experience in working on early-stage software and a wide range of tasks.
  • Proven experience using technology and how it helped you build a lasting product.

Key Responsibilities

  • Collaborate with cross-functional teams to develop key features and applications, including product managers, designers, and other engineers.
  • Design, develop, and maintain both front-end and back-end components of web applications, ensuring a seamless user experience.
  • Benchmark, analyze, and optimize web applications for scalability, security, and responsiveness.
  • Troubleshoot and resolve software defects and issues, ensuring high software quality.
  • Participate in code reviews, documentation, and the development of coding standards.

Requirements

  • Preferred M.Sc or Ph.d degree in Computer Science or a related field.
  • 7+ years of experience in Software development
  • Work experience using both compiled languages (Rust, Ocaml, Golang, Java, C#) or dynamic languages (Javascript, Python, Ruby)
  • Experience building web applications or desktop applications technologies such as Electron, tauri, React, Vue.js
  • Familiarity with CI/CD principles and technologies, including experience with GitHub Actions or similar.
  • Experience working with Relational and NoSQL databases such as Postgres, Redis, Neo4j, Milviousor MongoDB, and a good understanding of data consistency tradeoffs.
  • Proven Knowledge of cloud platforms (e.g., AWS, Azure, or GCP).

A bonus

  • Experience with graph databases such as neo4js, pinecone or milvious or similar.
  • Experience building native desktop apps.
  • Experience with NLP libraries and frameworks, such as spaCy, or Transformers.
  • Familiarity with machine learning concepts and the ability to work with NLP datase

Benefits

Remote - Must be within 2-3 hours of CET

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.