National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Scientific Software Engineer

Exeter
7 months ago
Applications closed

Related Jobs

View all jobs

Applied AI ML - Senior Associate - Machine Learning Engineer

Applied AI ML Lead - Senior Machine Learning Engineer - Commercial and Investment Bank

Machine Learning Research Engineer

Principal / Senior Data Scientist

Senior Data Scientist - Hometrack

Senior Geospatial Data Scientist

Senior Scientific Software Engineer

Exeter

Job Role

The focus for this role will be adding technical leadership to complement existing scientific leadership to an existing team of software engineers and data scientists. The role will support the existing project manager to lead on effective agile delivery practices. Further, the role will build technical understanding of the challenges around this machine learning activity and develop, and monitor against, a technical roadmap to address them. This role will need to balance the need for scientific progress with sustainability, maintainability, long-term delivery and improving the development cycle time. Contributing high quality code and reviews to the project as well as mentoring and developing junior members of the team will be part of the role.

Key Responsibilities

Supported by the project manager, act as Scrum Master and facilitate the delivery team to work effectively.

Lead the development of technical plans and roadmaps for the FastNet capability

With the assistance of the development team and project manager monitor progress against and adapt roadmaps escalating via the project manager when this effects milestones/deliverables.

Assist, mentor and develop team members; build capability and capacity for the team.

Respond to pull requests; review and refactor prototype science code for efficiency and robustness

Work as part of a team to incorporate new scientific developments into the FastNet code base.

Review and promote coding best practices for the project, including use of appropriate tools to facilitate this.

Maintain good documentation and promote knowledge transfer to other team members through pair programming, coaching, and team discussions.

Key skills

Expert knowledge of Python, knowledge of quality assurance with Python, especially testing and documentation.

Expert knowledge of agile development practices, specifically the Scrum framework.

Knowledge of developing and deploying machine learning workflows on cloud platforms such as AzureML.

Knowledge of working with large structured and unstructured datasets, ideally geospatial data.

Ability to mentor and develop others

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.