Senior Quantitative Analyst

City of London
7 months ago
Applications closed

Related Jobs

View all jobs

Senior Quantitative Analyst, Data Science - NESO

Senior Quantitative Analyst, Data Science - NESO

Senior Quantitative Data Scientist, Energy Modelling, Hybrid

Senior Data Science Quant – Hybrid, Impactful Energy Modelling

Senior MI & Data Analyst

Senior MI & Data Analyst

Excellent opportunity for a passionate Quantitative Analyst to join an excellent client's team based in central London. The successful Quantitative Analyst will join a small but very talented team and will be expected to interpret, filter, and analyse very large data sets whilst working closely with other analysts and developers.
The successful Quantitative Analyst will be a forward-thinking individual who is more than comfortable working to both their own initiative and as a team. You will ideally be educated to at least MSc in a quantitative subject such as Mathematics, Statistics, Computer Science or Physics and any knowledge with sports betting/trading would be beneficial but not essential.

This is an office-based role and as well as very competitive salaries, our client offers an excellent working environment.

Previous experience within the sports trading industry would be beneficial.

Skills required:

Proficient in several of the following: Python, C#, C++, Java
Mathematical Modelling
Mathematical skills, particularly a keen understanding of probabilities and statistics
Analytic mindset
Strong communication skills
Accuracy and attention to detail
Experience in data science (big data, deep learning, machine learning) is beneficial
Specific sports trading knowledge is beneficial but not essential

If you feel you have the skills and experience required for this opportunity, please contact Oliver Wilson at (url removed)

Spectrum IT Recruitment (South) Limited is acting as an Employment Agency in relation to this vacancy

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.