Senior MLOps Engineer

Quantexa
London
2 months ago
Create job alert

What we’re all about. 

Do you ever have the urge to do things better than the last time? We do. And it’s this urge that drives us every day. Our environment of discovery and innovation means we’re able to create deep and valuable relationships with our clients to create real change for them and their industries. It’s what got us here – and it’s what will make our future. At Quantexa, you’ll experience autonomy and support in equal measures allowing you to form a career that matches your ambitions. 41% of our colleagues come from an ethnic or religious minority background. We speak over 20 languages across our 47 nationalities, creating a sense of belonging for all.

Founded in 2016 by a small team, Quantexa was built with a vision of enabling better decision making through better data-driven intelligence. Seven years, twelve locations and 700+ employees later we recently gained “Unicorn” status with our Series E funding round.  

Our Analytics teams build, deploy and maintain the a wide range of AI models which underpin our platform. This includes specific expertise in emerging methods for Graph based model and NLP models. Our MLOps team is task with automating and maximising efficiency of the build, deployment and maintenance of all model types.  

We are seeking a senior MLOps Engineer to join our team. This individual will play a crucial role in designing, deploying, and maintaining production-level machine learning models. The Senior MLOps Engineer will focus on leading MLOps initiatives, including infrastructure, automation, and ensuring models are seamlessly transitioned from development to production. 

The role demands technical expertise in MLOps, experience in collaborating with remote teams,  

Requirements

What do I need to have?

  • You’ll have a background in hands-on technical development, with significant industry experience in a data science/engineering role or similar
  • Good knowledge of the machine learning development cycle
  • Strong programming skills in Python and experience using ML libraries
  • Experience with Cloud technologies (we use GCP internally)
  • Experience with Docker, Helm and  Kubernetes for deploying and managing containerized applications
  • Experience with DevOps tooling like Airflow, Jenkins or similar

Experience in the following would be beneficial:

  • Experience deploying machine learning models into production, including managing their lifecycle
  • Experience implementing model governance e.g. model versioning, drift reporting etc.
  • Experience with MLOps tools such as MLFlow, Kubeflow, or DVC
  • Experience with distributed processing systems like Spark (Scala and PySpark would be invaluable)
  • Experience in programming with  Scala
  • Experience with LLMs, and/or RAG architecture
  • Experience optimizing model inference for GPUs and deploying models with specialized hardware requirements
  • Experience mentoring junior engineers within a team to help them grow

Benefits

We know that just having an excellent glass door rating isn’t enough, so we’ve put together a competitive package as a way of saying thank you for all your hard work and dedication.

We offer:

  • Competitive salary 💰
  • Company bonus
  • Private healthcare, Life Insurance & Income Protection
  • Cycle Scheme and TechScheme
  • Free Calm App Subscription #1 app for meditation, relaxation and sleep 🧘‍♀️
  • Pension Scheme with a company contribution of 6% (if you contribute 3%)
  • 25 days annual leave (with the option to buy up to 5 days) + birthday off! 🌴
  • Ongoing personal development
  • Great WeWork Office Space & Company wide socials

Our mission

We have one mission. To help businesses grow. To make data easier. And to make the world a better place. We’re not a start-up. Not anymore. But we’ve not been around that long either. What we are is a collection of bright, passionate minds harnessing complexities and helping our clients and their communities. One culture, made of many. Heading in one direction – the future.

It's all about you

Quantexa is proud to be an Equal Opportunity Employer. We’re dedicated to creating an inclusive and diverse work environment, where everyone feels welcome, valued, and respected. We want to hear from people who are passionate about their work and align with our values. Qualified applications will receive consideration for employment without regard to their race, colour, ancestry, religion, national origin, sex, sexual orientation, gender identity, age, citizenship, marital, disability, or veteran status. Whoever you are, if you’re a curious, caring, and authentic human being who wants to help push the boundaries of what’s possible, we want to hear from you.


Internal pay equity across departments is crucial to our global compensation philosophy. Grade level and salary ranges are determined through interviews and a review of experience, education, training, knowledge, skills, and abilities of the applicant, equity with other team members, and alignment with market data.

Quantexa is committed to providing reasonable accommodations in our talent acquisition processes. If you require support, please inform our Talent Acquisition Team.

Related Jobs

View all jobs

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLOps Engineer

Senior MLops (Full Stack) Engineer | London | Foundation Models

Principal MLOps Engineer - Chase UK

Graduate AI & Machine Learning Engineer | London, UK

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.