Senior ML Ops Engineer

Aitopics
London
3 months ago
Applications closed

Related Jobs

View all jobs

Senior ML Engineer - NLP

Senior Software Engineer, Machine Learning

Machine Learning Engineer

Senior Machine Learning Scientist (UK Remote)

Senior MLOps Engineer

Senior MLOps Engineer

Role Title:Senior Machine Learning Operations Engineer (MLOps)

Location:London, Farringdon (Hybrid)

Royal Mail delivers more than our competitors put together. Yet we have ambitious plans to grow market share both at home and globally, whilst transforming our UK operation to increase efficiency and profit. Our strategy clearly sets out these plans – data and technology is pivotal to its success.

In this role you’ll play a crucial part in executing the strategic roadmap for data and analytics. Drawing on the latest technical innovations, you will enable data-driven decision-making across Royal Mail to deliver value for our customers, our people, and our shareholders.

You will work with and lead the technical direction of multi-disciplinary project and programme teams to contribute to the development and successful execution of Royal Mail’s data strategy. You will provide technical analytical expertise and mentorship to colleagues to lead usage and implementation of machine learning operations capability, refining data policies and best practices where appropriate. You will ensure that we deliver business value from our data assets.

What will you do?

  • Design, develop, and implement MLOps pipelines for the continuous deployment and integration of ML models
  • Collaborate with data scientists to understand model requirements and optimise deployment processes
  • Automate the training, testing and deployment processes for machine learning models
  • Monitor and maintain models, ensuring optimal performance, accuracy and reliability
  • Implement best practices for version control, model reproducibility and governance
  • Optimise machine learning pipelines for scalability, efficiency and cost-effectiveness
  • Troubleshoot and resolve issues related to model deployment and performance
  • Ensure compliance with security and data privacy standards in all MLOps activities
  • Keep up-to-date with the latest MLOps tools, technologies and trends

What skills and experience should you have?

  • Strong understanding of machine learning principles and model lifecycle management
  • Proficiency in programming languages such as Python, with hands-on experience in machine learning frameworks like TensorFlow, PyTorch, or Scikit-learn
  • Knowledge of CI/CD pipelines, automation tools and version control systems like Git
  • Strong problem-solving skills and ability to troubleshoot complex issues
  • Experience with monitoring tools and practices for model performance in production
  • Ability to work collaboratively in cross-functional teams
  • Experience with Google Cloud Platforms and their respective machine learning services
  • Familiarity with containerisation and orchestration tools such as Composer and Kubernetes
  • Knowledge and understanding of cloud data platform architecture, infrastructure, maintenance, and optimisation

What we offer you…

  • 18% Bonus
  • Car allowance (or cash alternative)
  • Hybrid Working (typically 3 days in office)
  • 25 days holiday (plus the option to buy more)
  • Plus, many more benefits!

Interview process and next steps…

We aim to move as quickly as possible! If your application is successful, you will be contacted by one of our recruitment team who will discuss the two-stage interview process with you.

Royal Mail is proud of our diverse employee network groups and the active role they play to support belonging and encourage a positive work environment. We are firmly committed to inclusion and passionate about our people representing the communities we serve.

We are happy to support your need for any adjustments during the application and hiring process. Please share the details within your application if required.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.