National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior ML Ops Engineer

Aitopics
London
5 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Principal Data Engineer

Senior Applied Scientist, NLP/KG/GenAI

Senior Data Science Director

Business Intelligence Engineer

Senior Data Scientist (Fraud)

Role Title:Senior Machine Learning Operations Engineer (MLOps)

Location:London, Farringdon (Hybrid)

Royal Mail delivers more than our competitors put together. Yet we have ambitious plans to grow market share both at home and globally, whilst transforming our UK operation to increase efficiency and profit. Our strategy clearly sets out these plans – data and technology is pivotal to its success.

In this role you’ll play a crucial part in executing the strategic roadmap for data and analytics. Drawing on the latest technical innovations, you will enable data-driven decision-making across Royal Mail to deliver value for our customers, our people, and our shareholders.

You will work with and lead the technical direction of multi-disciplinary project and programme teams to contribute to the development and successful execution of Royal Mail’s data strategy. You will provide technical analytical expertise and mentorship to colleagues to lead usage and implementation of machine learning operations capability, refining data policies and best practices where appropriate. You will ensure that we deliver business value from our data assets.

What will you do?

  • Design, develop, and implement MLOps pipelines for the continuous deployment and integration of ML models
  • Collaborate with data scientists to understand model requirements and optimise deployment processes
  • Automate the training, testing and deployment processes for machine learning models
  • Monitor and maintain models, ensuring optimal performance, accuracy and reliability
  • Implement best practices for version control, model reproducibility and governance
  • Optimise machine learning pipelines for scalability, efficiency and cost-effectiveness
  • Troubleshoot and resolve issues related to model deployment and performance
  • Ensure compliance with security and data privacy standards in all MLOps activities
  • Keep up-to-date with the latest MLOps tools, technologies and trends

What skills and experience should you have?

  • Strong understanding of machine learning principles and model lifecycle management
  • Proficiency in programming languages such as Python, with hands-on experience in machine learning frameworks like TensorFlow, PyTorch, or Scikit-learn
  • Knowledge of CI/CD pipelines, automation tools and version control systems like Git
  • Strong problem-solving skills and ability to troubleshoot complex issues
  • Experience with monitoring tools and practices for model performance in production
  • Ability to work collaboratively in cross-functional teams
  • Experience with Google Cloud Platforms and their respective machine learning services
  • Familiarity with containerisation and orchestration tools such as Composer and Kubernetes
  • Knowledge and understanding of cloud data platform architecture, infrastructure, maintenance, and optimisation

What we offer you…

  • 18% Bonus
  • Car allowance (or cash alternative)
  • Hybrid Working (typically 3 days in office)
  • 25 days holiday (plus the option to buy more)
  • Plus, many more benefits!

Interview process and next steps…

We aim to move as quickly as possible! If your application is successful, you will be contacted by one of our recruitment team who will discuss the two-stage interview process with you.

Royal Mail is proud of our diverse employee network groups and the active role they play to support belonging and encourage a positive work environment. We are firmly committed to inclusion and passionate about our people representing the communities we serve.

We are happy to support your need for any adjustments during the application and hiring process. Please share the details within your application if required.

#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.