Senior ML Ops Engineer

Aitopics
London
11 months ago
Applications closed

Related Jobs

View all jobs

Data/ Machine Learning Operations Engineer

Senior Data Scientist

Senior Data Scientist - Recommender Systems Experience

Senior Data Scientist - Recommender Systems Experience

AI & Data Science Manager / Senior Manager

AI & Data Science Manager / Senior Manager

Role Title:Senior Machine Learning Operations Engineer (MLOps)

Location:London, Farringdon (Hybrid)

Royal Mail delivers more than our competitors put together. Yet we have ambitious plans to grow market share both at home and globally, whilst transforming our UK operation to increase efficiency and profit. Our strategy clearly sets out these plans – data and technology is pivotal to its success.

In this role you’ll play a crucial part in executing the strategic roadmap for data and analytics. Drawing on the latest technical innovations, you will enable data-driven decision-making across Royal Mail to deliver value for our customers, our people, and our shareholders.

You will work with and lead the technical direction of multi-disciplinary project and programme teams to contribute to the development and successful execution of Royal Mail’s data strategy. You will provide technical analytical expertise and mentorship to colleagues to lead usage and implementation of machine learning operations capability, refining data policies and best practices where appropriate. You will ensure that we deliver business value from our data assets.

What will you do?

  • Design, develop, and implement MLOps pipelines for the continuous deployment and integration of ML models
  • Collaborate with data scientists to understand model requirements and optimise deployment processes
  • Automate the training, testing and deployment processes for machine learning models
  • Monitor and maintain models, ensuring optimal performance, accuracy and reliability
  • Implement best practices for version control, model reproducibility and governance
  • Optimise machine learning pipelines for scalability, efficiency and cost-effectiveness
  • Troubleshoot and resolve issues related to model deployment and performance
  • Ensure compliance with security and data privacy standards in all MLOps activities
  • Keep up-to-date with the latest MLOps tools, technologies and trends

What skills and experience should you have?

  • Strong understanding of machine learning principles and model lifecycle management
  • Proficiency in programming languages such as Python, with hands-on experience in machine learning frameworks like TensorFlow, PyTorch, or Scikit-learn
  • Knowledge of CI/CD pipelines, automation tools and version control systems like Git
  • Strong problem-solving skills and ability to troubleshoot complex issues
  • Experience with monitoring tools and practices for model performance in production
  • Ability to work collaboratively in cross-functional teams
  • Experience with Google Cloud Platforms and their respective machine learning services
  • Familiarity with containerisation and orchestration tools such as Composer and Kubernetes
  • Knowledge and understanding of cloud data platform architecture, infrastructure, maintenance, and optimisation

What we offer you…

  • 18% Bonus
  • Car allowance (or cash alternative)
  • Hybrid Working (typically 3 days in office)
  • 25 days holiday (plus the option to buy more)
  • Plus, many more benefits!

Interview process and next steps…

We aim to move as quickly as possible! If your application is successful, you will be contacted by one of our recruitment team who will discuss the two-stage interview process with you.

Royal Mail is proud of our diverse employee network groups and the active role they play to support belonging and encourage a positive work environment. We are firmly committed to inclusion and passionate about our people representing the communities we serve.

We are happy to support your need for any adjustments during the application and hiring process. Please share the details within your application if required.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.