Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Manager - Recommendations

SoundCloud Ltd
London
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Manager, Data Engineering

Senior Manager Data Science and Analytics

Senior Manager, Financial Services, Data Engineering / Modelling Lead, AI&D, Technology & Trans[...]

Senior Manager, Financial Services, Data Engineering / Modelling Lead, AI&D, Technology & Trans[...]

Senior Manager Data Science & Analytics

Senior Data Science Manager - Financial Planning and Analysis

SoundCloud empowers artists and fans to connect and share through music. Founded in 2007, SoundCloud is an artist-first platform empowering artists to build and grow their careers by providing them with the most progressive tools, services, and resources. With over 400+ million tracks from 40+ million artists, the future of music is SoundCloud.

SoundCloud is the #1 destination to discover what's next in music. And that means, our Music Recommendation is at the core of SoundCloud’s strategy . As the Senior Manager of the Recommendation teams, you will drive technical strategy and execution of projects to help music fans find great music and help creators to find the best possible audience for their music. You will work closely with Product Managers and UX Researchers to develop experiences helping our customers to find great music in our ever-growing catalog of ~300 million tracks. You will manage the Recommendation teams that research, design, develop and maintain recommendation services at SoundCloud. You will be responsible for products such as personalized home feed ranking, personalized playlists generation, related music recommendations and artist stations as well as ideation and delivery of new services and capabilities.

In your role you will have end-to-end ownership of the software engineering and machine learning infrastructure necessary to leverage the data and other resources in order to build and deliver search and recommendation mechanisms. You will prioritize activities, delegate and supervise all engineers’ activities and deliverables. As a people manager you will be responsible for hiring, managing and developing a group of talented software engineers working with cutting-edge technologies such as microservices, Scala, TypeScript/React, Python, data processing platforms such as BigQuery and other Cloud Platform services.You will also grow and work with the team of machine learning engineers and scientists working with variety of ML frameworks including (but not limited to) PyTorch and Tensorflow. We care much more about your general engineering and ML skills and positive attitude towards getting things done than any prior knowledge of a particular language or framework.

About the team: We’re a team of 15 people from over 10 countries. We are passionate about what we do, the problems we’re solving for creators and fans, and of course, music. We value trust between team members, experimentation, accountability, and work/life balance. We are an agile, hard-working team who delivers simply and quickly, while having fun in the process!

Key responsibilities:

Work closely with the Product Managers, UX Researchers and Designers to transform Discovery at SoundCloud. Broadcast the Discovery vision to inspire technical and non-technical stakeholders. Drive short and long-term objectives and key results with full responsibility for executing the OKRs. Be a pragmatic voice showing where to invest engineering effort to drive business outcomes. Lead, support and mentor Engineers and Scientists. Recruit and retain top-notch talents for your teams. Act as a technical liaison and representative for other teams, groups, and the company. Keep in touch with industry trends and technological advances and highlight opportunities that apply to SoundCloud.

Required skills and experience:

Experience with managing engineers and scientists. A strong engineering and data science background, knowledge and experience on recommendation engine and machine learning systems, being able to evaluate complex technical decisions. Industry experience building data-driven products and implementing machine-learning solutions at scale. Experience in maintaining large cloud systems over time, establishing a technical roadmap and balancing product and engineering concerns Extensive experience with and in-depth knowledge of agile methodologies. Demonstrated expertise in problem solving and technical innovation. Recruiting and culturally-informed communication skills.

If you are excited by the opportunity to directly impact the daily experience and happiness of millions of people around the world, giving them the power to share and connect through music, we’d love to hear from you. 

Read about engineering at SoundCloud.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.