Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Machine Learning Scientist

Markerstudy Group
Manchester
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Scientist

Senior Machine Learning Scientist

Senior Machine Learning Scientist

Senior Machine Learning Scientist (Generative AI) - Viator

Senior Machine Learning Scientist (Viator)

Senior Machine Learning Scientist, Financial Crime

Job title: Senior Machine Learning Scientist

Location: Flexible

Role overview

Markerstudy Group have a very exciting opportunity for a Senior Machine Learning Scientist to support the delivery and deployment of Insurance Claims and Operations use cases.

You will have the technical support of an established machine learning function, to then create fully automated machine learning pipelines.

You will be supported by an Operations Insight function that have vast experience in the delivery, evaluation, and performance tracking of machine learning models.

The role will be working in an exciting, diverse and changeable environment, key stakeholders will be across Broker Services, Customer & Third Party Claims, Counter Fraud and Continuous Improvement.

Responsibilities:

Adhering to best practice, covering all aspects of machine learning, ensuring policies and procedures are adhered to Create robust high-quality code using test-driven development (TDD) techniques and adhering to the SOLID coding standard Deploy and maintain machine learning methods in a DevOps / MLOps based machine learning environment Tune machine learning methods for optimal performance. Deploy and maintain machine learning methods in our machine learning pipelines using robust test-driven development (TDD) coding approaches, using the SOLID software development principles. Actively contribute to creating a culture of coding and data excellence Mentor and coach, a small, specialized team of junior machine learning specialists and insight analysts

Key Skills and Experience:

Experience in tuning and deploying machine learning methods Experience with some of the following predictive modelling techniques; Logistic Regression, GBMs, Elastic Net GLMs, GAMs, Decision Trees, Random Forests, Neural Nets, Clustering, Isolation Forest, SVMs, NLP Experience in DevOps and Azure ML, or other MLOps and ML Lifecycle technology stacks, such as AWS, Databricks, Google Cloud, etc. Experience in creating production grade coding and SOLID programming principles, including test-driven development (TDD) approaches Experience in programming languages (e.g. Python, PySpark, R, SAS, SQL) Experience in source-control software, e.g., GitHub Ability to demonstrate that bias and ethics have been considered throughout the model build and deployment Ability to track model performance including degradation and provide a clear and concise view on explainability Proficient at communicating results in a concise manner both verbally and written

Behaviours:

A high level of professional/academic excellence, educated to at least a master’s level in a STEM-based or DS / ML / AI / or mathematical discipline Collaborative and team player Logical thinker with a professional and positive attitude Passion to innovate and improve processes

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.

Why the UK Could Be the World’s Next Machine Learning Jobs Hub

Machine learning (ML) is becoming essential to industries across the globe—from finance and healthcare to retail, logistics, defence, and the public sector. Its ability to uncover patterns in data, make predictions, drive automation, and increase operational efficiency has made it one of the most in-demand skill sets in the technology world. In the UK, machine learning roles—from engineers to researchers, product managers to analysts—are increasingly central to innovation. Universities are expanding ML programmes, enterprises are scaling ML deployments, and startups are offering applied ML solutions. All signs point toward a surging need for professionals skilled in modelling, algorithms, data pipelines, and AI systems. This article explores why the United Kingdom is exceptionally well positioned to become a global machine learning jobs hub. It examines the current landscape, strengths, career paths, sector-specific demand, challenges, and what must happen for this vision to become reality.