Senior Machine Learning Engineer, Personalization

Spotify
London
1 month ago
Applications closed

Related Jobs

View all jobs

Junior Data Scientist | London | SaaS Data Platform

Senior Machine Learning Engineer

Principal Data Scientist - NLP

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

The Personalization team makes decisions about what to play next easier and more enjoyable for every listener. From Blend to Discover Weekly, we’re behind some of Spotify’s most-loved features. We built them by understanding the world of music and podcasts better than anyone else. Join us and you’ll keep millions of users listening by making great recommendations to each and every one of them.

We are looking for a Senior Machine Learning Engineer to join our product area of hardworking engineers that are passionate about connecting new and emerging creators with users via recommendation algorithms. As an integral part of the squad, you will collaborate with engineers, research scientists and data scientists in prototyping and productizing state-of-the-art ML.

What You'll Do

  • Contribute to designing, building, evaluating, shipping, and refining Spotify’s personalization products by hands-on ML development.
  • Collaborate with a cross functional agile team spanning user research, design, data science, product management, and engineering to build new product features that advance our mission to connect artists and fans in personalized and relevant ways.
  • Prototype new approaches and productionize solutions at scale for our hundreds of millions of active users.
  • Promote and role-model best practices of ML systems development, testing, evaluation, etc., both inside the team as well as throughout the organization.
  • Be part of an active group of machine learning practitioners in Europe (and across Spotify) collaborating with one another.
  • Together with a wide range of collaborators, help develop a creator-first vision and strategy that keeps Spotify at the forefront of innovation in the field.

Who You Are

  • You have a strong background in machine learning, enjoy applying theory to develop real-world applications, with experience and expertise in bandit algorithms, LLMs, general neural networks, and/or other methods relevant to recommendation systems.
  • You have hands-on experience implementing production machine learning systems at scale in Java, Scala, Python, or similar languages. Experience with TensorFlow, PyTorch, Scikit-learn, etc. is a strong plus.
  • You have some experience with large scale, distributed data processing frameworks/tools like Apache Beam, Apache Spark, or even our open source API for it - Scio, and cloud platforms like GCP or AWS.
  • You care about agile software processes, data-driven development, reliability, and disciplined experimentation.
  • You love your customers even more than your code.

Where You'll Be

  • We offer you the flexibility to work where you work best! For this role, you can be within the European region as long as we havea work location.
  • This team operates within the GMT/CET time zone for collaboration.
  • Excluding France due to on-call restrictions.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.