Senior Machine Learning Engineer, Perception

Rivian
London
18 hours ago
Create job alert

About Rivian

Rivianis on a mission to keep the world adventurous forever. This goes for the emissions-free Electric Adventure Vehicles we build, and the curious, courageous souls we seek to attract.

As a company, we constantly challenge what’s possible, never simply accepting what has always been done. We reframe old problems, seek new solutions and operate comfortably in areas that are unknown. Our backgrounds are diverse, but our team shares a love of the outdoors and a desire to protect it for future generations.


Role Summary

You will be a key member of the Perception team at Rivian, which develops advanced machine learning algorithms that directly impact safety critical self-driving features of our category defining vehicles.


Responsibilities

As a member of the Autonomy team, you will guide the architecture, implementation, and deployment of foundation models that act as learned world models. These models will support not only perception tasks (e.g., object detection, scene understanding) but also downstream decision-making and closed-loop autonomy.

.Key areas of responsibility include:

  • Developing technical strategy and architecture for foundation models as unified world models
  • Developing multi-modal, multi-task transformer-based systems that support closed-loop autonomy
  • Building training and evaluation pipelines at scale across petabytes of real-world and simulated driving data
  • Collaborating with cross-functional teams across perception, planning, simulation, and ML infrastructure
  • Driving alignment between model capabilities and real-world deployment constraints (latency, robustness, validation)
  • Publishing internal technical guidance and mentoring engineers across autonomy ML


Qualifications

  • B.S., M.S., or Ph.D. in Computer Science, Robotics, or a related field
  • 7+ years of experience building and deploying large-scale ML systems
  • Deep understanding of foundation models, self-supervised learning, and world models in robotics or simulation
  • Strong software engineering background, with fluency in Python and C++
  • Experience training and evaluating transformer models or end-to-end autonomous agents
  • Familiarity with real-time inference systems and autonomous vehicle constraints
  • Proven leadership in driving ML projects from research to production

Bonus:

  • Prior work on end-to-end autonomous driving architectures (e.g., imitation learning, behavior cloning, world models)
  • Experience with sensor fusion (LiDAR, camera, radar) in a learned model




Equal Opportunity

Rivian is an equal opportunity employer and complies with all applicable federal, state, and local fair employment practices laws. All qualified applicants will receive consideration for employment without regard to race, color, religion, national origin, ancestry, sex, sexual orientation, gender, gender expression, gender identity, genetic information or characteristics, physical or mental disability, marital/domestic partner status, age, military/veteran status, medical condition, or any other characteristic protected by law.

Rivian is committed to ensuring that our hiring process is accessible for persons with disabilities. If you have a disability or limitation, such as those covered by the Americans with Disabilities Act, that requires accommodations to assist you in the search and application process, please email us at.

Candidate Data Privacy

Rivian may collect, use and disclose your personal information or personal data (within the meaning of the applicable data protection laws) when you apply for employment and/or participate in our recruitment processes (“Candidate Personal Data”). This data includes contact, demographic, communications, educational, professional, employment, social media/website, network/device, recruiting system usage/interaction, security and preference information. Rivian may use your Candidate Personal Data for the purposes of (i) tracking interactions with our recruiting system; (ii) carrying out, analyzing and improving our application and recruitment process, including assessing you and your application and conducting employment, background and reference checks; (iii) establishing an employment relationship or entering into an employment contract with you; (iv) complying with our legal, regulatory and corporate governance obligations; (v) recordkeeping; (vi) ensuring network and information security and preventing fraud; and (vii) as otherwise required or permitted by applicable law.

Rivian may share your Candidate Personal Data with (i) internal personnel who have a need to know such information in order to perform their duties, including individuals on our People Team, Finance, Legal, and the team(s) with the position(s) for which you are applying; (ii) Rivian affiliates; and (iii) Rivian’s service providers, including providers of background checks, staffing services, and cloud services.

Rivian may transfer or store internationally your Candidate Personal Data, including to or in the United States, Canada, the United Kingdom, and the European Union and in the cloud, and this data may be subject to the laws and accessible to the courts, law enforcement and national security authorities of such jurisdictions.

Please note that we are currently not accepting applications from third party application services.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior 3D Computer Vision Engineer

Senior 3D Computer Vision Engineer

Tech Lead Manager, Machine Learning - Perception

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.