Senior Machine Learning Engineer

55 Exec Search
Manchester
2 days ago
Create job alert

Manchester / Hybrid / Remote – depending on candidate location. Candidates will be required to come to the Manchester office if required, but are flexible.


Our global client is building advanced behavioural intelligence technology that enables secure, adaptive digital identity. By analysing how people naturally interact with devices, their AI systems generate powerful authentication signals designed for real-world use at scale.


This is a high-impact opportunity to join a rapidly growing AI team and take ownership of designing, training, and deploying cutting-edge behavioural models and data pipelines.


The Role

As a Senior ML Engineer, you will design, build, and refine machine learning models that sit at the core of the company’s behavioural AI platform.


This is a hands-on role working with real-world sensor and interaction data, building predictive models over time-series and human behaviour data, and deploying models that make authentication decisions in production. You’ll collaborate closely with other AI engineers, as well as engineering and product teams, to ensure models are robust, efficient, and production-ready.


Key Responsibilities

  • Develop, train, and evaluate deep learning models for behavioural authentication using time-series and human behaviour data
  • Work with multimodal, event-driven sensor data, including accelerometer, gyroscope, touch dynamics, and device interaction signals
  • Build and maintain data processing pipelines for irregular and asynchronous mobile sensor data
  • Design and train predictive models on behavioural datasets
  • Implement and experiment with modern architectures, including transformer-based and attention-driven models
  • Design and run experiments to improve authentication metrics such as False Accept Rate (FAR) and False Reject Rate (FRR)
  • Track experiments, models, and datasets using tools such as MLflow, ZenML, and structured experiment management workflows
  • Prepare models for efficient on-device execution, balancing accuracy, latency, and mobile hardware constraints
  • Deploy models for edge inference using CoreML and ONNX
  • Work closely with mobile engineering teams to embed AI functionality into production SDKs
  • Contribute to the evolution of large-scale behavioural modelling architectures and shared training infrastructure

What We’re Looking For

Required



  • Strong hands-on experience building deep learning systems in PyTorch (beyond pre-trained models or high-level wrappers)
  • Demonstrated experience working with time-series data and human behaviour data, ideally from sensors, user interactions, or wearables
  • Experience building predictive models on real-world datasets, with an emphasis on model architecture, experimentation, and evaluation
  • Experience implementing modern neural architectures, including transformers, attention mechanisms, custom heads, and positional encodings
  • Comfortable managing reproducible ML workflows, experiments, and model versions using tools such as MLflow, ZenML, or similar
  • Experience deploying machine learning models using cloud infrastructure (AWS preferred), including services such as SageMaker
  • Strong Python skills, including modern tooling (e.g. uv or equivalent dependency/workflow management)
  • A practical, delivery-focused mindset with experience taking models from research to production
  • PhD in Machine Learning, Computer Science, Applied Mathematics, or a related field
  • Experience with behavioural modelling, biometrics, authentication systems, or security-focused AI
  • Background in human activity recognition, behavioural analytics, or gait analysis
  • Exposure to on-device or constrained-environment deployment
  • Familiarity with representation learning or self-supervised approaches
  • Research background or publications in relevant domains
  • Edge Deployment: CoreML, ONNX
  • Data: Python, S3, multimodal sensor and time-series pipelines
  • Collaboration: Git, JIRA, structured OKR methodology

Why You’ll Enjoy Working With Our Client

You’ll join a small, growing AI team where engineers have genuine ownership and autonomy. You’ll be trusted to solve complex, open-ended problems, apply research-driven thinking, and build systems designed to ship at scale. The culture values curiosity, technical depth, and real-world impact.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.