Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Machine Learning Engineer

BoF Careers
London
1 month ago
Create job alert

As a Senior Machine Learning Engineer at On, you'll play a critical role in the full lifecycle of our machine learning models. Besides being responsible for training and deploying models, you will spearhead our MLOps initiatives to ensure their seamless and efficient integration and operation in production. This includes championing MLOps best practices, enhancing deployment processes, developing essential tooling and automation to maximize the impact of our AI solutions, and implementing robust monitoring to optimize performance and reliability.


Your Mission

  1. Lead the implementation and continuous improvement of our MLOps strategy, establishing best practices for model development, deployment, and monitoring.
  2. Create and train machine learning models to solve specific business problems, such as product recommendations, customer segmentation, and demand forecasting. Implement such models into production systems to make predictions, drive real-time personalization, and support decision-making.
  3. Design and build the necessary infrastructure and tooling to support efficient and scalable model deployment, including CI/CD pipelines and automated testing.
  4. Implement and own Terraform to manage and provision our cloud infrastructure for machine learning operations.
  5. Oversee the transition to a real-time streaming architecture for our machine learning applications, ensuring efficient data ingestion, feature engineering, and model serving in a streaming context.
  6. Develop and implement a comprehensive monitoring framework to track model performance, identify potential issues, and ensure optimal model health in production. Monitor model performance and update them as needed to adapt to new data and changing conditions.
  7. Collaborate closely with data scientists and engineers to ensure seamless integration of models into our existing systems and workflows. Stay abreast of the latest MLOps trends and technologies to continuously improve our processes and tools.


Your Story

  1. You have 5+ years of experience as a Machine Learning Engineer with a strong focus on MLOps. You have a proven track record of successfully deploying and managing machine learning models in production environments.
  2. You possess deep knowledge of MLOps principles, tools, and best practices.
  3. You are proficient in cloud platforms (Google Cloud Platform is preferred), infrastructure-as-code tools like Terraform.
  4. You have experience with CI/CD pipelines, containerization technologies (e.g., Docker), and orchestration tools (e.g., Kubernetes) and using orchestration tools such as Kubeflow (our preferred tool) or similar frameworks like Apache Airflow to manage and automate ML workflows.
  5. You have experience with real-time data streaming technologies such as Kafka and Confluent and feature stores in such settings.
  6. You are skilled in building and maintaining monitoring systems for machine learning models.
  7. You have excellent communication and collaboration skills, enabling you to effectively work with cross-functional teams.


Bonus:

  • Knowledge of frameworks such as LangChain used to orchestrate LLMs.
  • Experience in LLM evaluations, debugging, and monitoring using tools such as LangFuse or LangSmith.


Meet The Team

We're a growing team of passionate Data Scientists and Machine Learning Engineers working across On to build creative and impactful models end-to-end that personalize experiences, optimize decision making, and predict future trends. We sit within Technology and have the opportunity to collaborate across On - Optimizing how we use data, how we consume data, and how we support On's growth through data is something you could be a part of, and we'd love to hear from you!


What We Offer

On is a place that is centered around growth and progress. We offer an environment designed to give people the tools to develop holistically - to stay active, to learn, explore, and innovate. Our distinctive approach combines a supportive, team-oriented atmosphere, with access to personal self-care for both physical and mental well-being, so each person is led by purpose.


On is an Equal Opportunity Employer. We are committed to creating a work environment that is fair and inclusive, where all decisions related to recruitment, advancement, and retention are free of discrimination.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Lead Machine Learning Engineer

Senior ML Engineer: Scalable MLOps & Infrastructure

Machine Learning Engineer (Databricks)

Senior MLOps Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.