Senior Lead Software Engineer- AIML

JPMorgan Chase & Co.
Glasgow
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Lead Software Engineer- Data Engineer, Java/Python

Senior Lead Software Engineer- Data Engineer, Java/Python

Senior Lead Software Engineer- Data Engineer, Java/Python

Senior Lead Software & Data Engineer - Java/Python

Senior Lead Data Engineer (Java/Python) - Cloud & AI

Lead Software Engineer - Data Engineering

When you mentor and advise multiple technical teams and move financial technologies forward, it’s a big challenge with big impact. You were made for this. 

As a Senior Lead Software Engineer at JPMorgan Chase within the ALML, Corporate Technology, you are an integral part of an agile team that works to enhance, build, and deliver trusted market-leading technology products in a secure, stable, and scalable way. Drive significant business impact through your capabilities and contributions, and apply deep technical expertise and problem-solving methodologies to tackle a diverse array of challenges that span multiple technologies and applications.

Job responsibilities

Executes software solutions, design, development, and technical troubleshooting with ability to think beyond routine or conventional approaches to build solutions or break down technical problems Work with product managers, data scientists, ML engineers, and other stakeholders to understand requirements. Design, develop, and deploy state-of-the-art AI/ML/LLM/GenAI solutions to meet business objectives. Develop and maintain automated pipelines for model deployment, ensuring scalability, reliability, and efficiency. Implement optimization strategies to fine-tune generative models for specific NLP use cases, ensuring high-quality outputs in summarization and text generation. Conduct thorough evaluations of generative models (., GPT-4), iterate on model architectures, and implement improvements to enhance overall performance in NLP applications. Implement monitoring mechanisms to track model performance in real-time and ensure model reliability. Communicate AI/ML/LLM/GenAI capabilities and results to both technical and non-technical audiences. Stay informed about the latest trends and advancements in the latest AI/ML/LLM/GenAI research, implement cutting-edge techniques, and leverage external APIs for enhanced functionality. Adds to team culture of diversity, equity, inclusion, and respect

Required qualifications, capabilities, and skills

Formal training or certification on software engineering concepts and proficient in applied experience Experience in applied AI/ML engineering, with a track record of developing and deploying business critical machine learning models in production. Proficiency in programming languages like Python for model development, experimentation, and integration with OpenAI API. Experience with machine learning frameworks, libraries, and APIs, such as TensorFlow, PyTorch, Scikit-learn, and OpenAI API. Solid understanding of agile methodologies such as CI/CD, Application Resiliency, and Security Experience with cloud computing platforms (., AWS, Azure, or Google Cloud Platform), containerization technologies (., Docker and Kubernetes), and microservices design, implementation, and performance optimization. Demonstrated knowledge of software applications and technical processes within a technical discipline (., cloud, artificial intelligence, machine learning, mobile, Solid understanding of fundamentals of statistics, machine learning (., classification, regression, time series, deep learning, reinforcement learning), and generative model architectures, particularly GANs, VAEs. Ability to identify and address AI/ML/LLM/GenAI challenges, implement optimizations and fine-tune models for optimal performance in NLP applications. Strong collaboration skills to work effectively with cross-functional teams, communicate complex concepts, and contribute to interdisciplinary projects.

Preferred qualifications, capabilities, and skills

Familiarity with the financial services industries. Expertise in designing and implementing pipelines using Retrieval-Augmented Generation (RAG). Hands-on knowledge of Chain-of-Thoughts, Tree-of-Thoughts, Graph-of-Thoughts prompting strategies. A portfolio showcasing successful applications of generative models in NLP projects, including examples of utilizing OpenAI APIs for prompt engineering.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.