Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Engineer, Data Engineering

Computappoint
London
4 days ago
Create job alert

Senior Data Engineer
Permanent
Hybrid: 2 days per week onsite
Office Location: Central London

Our client, a UK-based fintech operating an AI-powered intelligent commerce platform, is seeking a Senior Data Engineer to build and maintain the data infrastructure that drives AI-enabled decision-making across their global operations. You'll design the data systems that underpin both strategic business intelligence and advanced AI capabilities.

Design and build data warehouse solutions that support business objectives with optimal performance
Develop, implement, and maintain robust ELT pipelines consuming data from internal systems and external partners
Partner with business stakeholders and customers to unlock data insights and build impactful analytical models
Strong expertise in SQL and database architecture
Practical experience with data warehousing platforms (Snowflake, PostgreSQL, MySQL)
Solid Python programming capabilities for data engineering workflows

Related Jobs

View all jobs

Senior Engineer, Data Engineering

Senior Engineer, Data Engineering

Senior Engineer, Data Engineering

Senior Engineer, Data Engineering

Senior Engineer, Data Engineering

Senior Engineer, Data Engineering

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.